如何计算函数栈空间大小_如何计算函数图象的曲线长度

本文探讨了如何利用微积分计算函数在给定区间上的曲线长度。通过极限和积分思想,将曲线近似为一系列短小线段,当线段长度趋于0时,这些线段总长的极限即为曲线长度。以半圆为例,展示了如何使用积分公式求得曲线长度,证实了微积分在解决实际数学问题中的强大能力。
摘要由CSDN通过智能技术生成

前面我写文章介绍了定积分——怎样理解定积分 ,定积分可以计算曲线包围的面积。今天我们来说说如何计算函数图象在给定区间上的曲线长度。

79938b04ff8bb38ece6435c8dfac04de.png

如图,函数f(x)在区间[a,b]上的图象是一条平滑曲线,如何计算这种曲线的长度呢?我们知道在平面直角坐标系中的线段长度可以直接由两点距离公式求出,但我们却不能直接求出曲线的长度。曲线长度的计算采取的思想也是“以直代曲”,就是当一段曲线上的两点充分接近时,此时这两点间的曲线可以近似看成线段。

函数图象的平滑曲线我们一般称作平面曲线弧,利用极限和积分思想我们可以求出平面曲线弧的长度。

5676017d6c3a6ce73bfc0b4fede314e1.png

如图,一函数在某区间上的图象为平面曲线弧AB ,我们作该曲线弧的内接折线,当折线段的最大边长λ→0 时,若折线的总长趋近于一个确定的极限,则称此极限为弧AB的长度 ,即

71de2ee8414ef98124b9a61ee2c02a28.png
18e11d8bb2d689d2ab189793076a4311.png

如图,设函数y=f(x)在区间[a,b]上可导,其图象为弧AB,记弧长s为x的函数s(x) ,则

03444117150c921e8c81d372953f2f06.png
82d4b32ded74e50162309303223ad66c.png

显然

4d3d44d865d5587addfed86f15b661fe.png

所以

83c5976a43417e48495c674e8018bc9c.png
d498b0a584f8129e7a8d2249c7cb8b95.png

由积分知识可知函数y=f(x)的图象在区间[a,b]上的曲线弧长

5898f971a272b45127948c209d02414f.png

上式就是函数图象曲线长度的计算公式,我们可以举一个例来验证说明:

求函数

a990567bcc27b409cc1d85bf6abff771.png

在区间[-1,1]的图象曲线长度,记图象长度为l.

a97212138a0cc53b66e57b76357eac54.png

我们知道这个函数的图象是圆心在原点半径为1的半圆( x轴上方),显然图象长度 l=π ,现在我们用上面的公式计算:

11ee2afc65eb29310d6fe7f6146ddb38.png

从这里我么也看出微积分在数学上的运用,微积分使得数学上许多问题的求解变得可能,微积分自创立以来就成为重要的数学工具,在数学物理等各领域的许多问题的计算上发挥了重要作用!

3270213190d520f53d73149bc93ca8e1.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值