前面我写文章介绍了定积分——怎样理解定积分 ,定积分可以计算曲线包围的面积。今天我们来说说如何计算函数图象在给定区间上的曲线长度。
如图,函数f(x)在区间[a,b]上的图象是一条平滑曲线,如何计算这种曲线的长度呢?我们知道在平面直角坐标系中的线段长度可以直接由两点距离公式求出,但我们却不能直接求出曲线的长度。曲线长度的计算采取的思想也是“以直代曲”,就是当一段曲线上的两点充分接近时,此时这两点间的曲线可以近似看成线段。
函数图象的平滑曲线我们一般称作平面曲线弧,利用极限和积分思想我们可以求出平面曲线弧的长度。
如图,一函数在某区间上的图象为平面曲线弧AB ,我们作该曲线弧的内接折线,当折线段的最大边长λ→0 时,若折线的总长趋近于一个确定的极限,则称此极限为弧AB的长度 ,即
如图,设函数y=f(x)在区间[a,b]上可导,其图象为弧AB,记弧长s为x的函数s(x) ,则
显然
所以
由积分知识可知函数y=f(x)的图象在区间[a,b]上的曲线弧长
上式就是函数图象曲线长度的计算公式,我们可以举一个例来验证说明:
求函数
在区间[-1,1]的图象曲线长度,记图象长度为l.
我们知道这个函数的图象是圆心在原点半径为1的半圆( x轴上方),显然图象长度 l=π ,现在我们用上面的公式计算:
从这里我么也看出微积分在数学上的运用,微积分使得数学上许多问题的求解变得可能,微积分自创立以来就成为重要的数学工具,在数学物理等各领域的许多问题的计算上发挥了重要作用!