anns初级计算机证书,机器学习 综述

回归算法(Regression Algorithms)包括线性回归(Linear Regression)、决策树(Decision Trees)、贝叶斯网络(Bayesian Networks)、模糊分类(Fuzzy Classification),以及ANNs。

无监督学习中,训练集只有数据,而没有标签。无监督学习包括聚类算法,将数据按相关性的远近分为多个簇,最常见的如K-means 聚类,还有分层聚类(Hierarchical Clustering)、高斯混合模型(Gaussian Mixture Models)、遗传算法(Genetic Algorithms)、ANNs。

降维算法(Dimensionality Reduction Algorithms)是将原始多维数据映射为低维数据,用更少的数据量来描述原始数据的主要特征。降维算法如主成分分析(Principal Component Analysis,PCA)、张量还原(Tensor Reduction)、多维统计(Multidimensional Statistics)、随机投射(Random Projection)、ANNs。

903d1de22d05db69c642800b58fa968c.png

在机器学习的工具使用中,大部分都是开源的,以便于我们更容易地进行实验和学习。

机器学习社区主要分为两个阵营:一个倾向于使用R语言,一个倾向于使用Python。当然,这种阵营划分是没有什么意义的,因为优秀的工程师往往能够根据工程需求熟练地使用各种工具。

拥有强统计学背景的人往往更喜欢使用R语言,R语言使用ggplot2可视化工具库来实现非常帮的图表绘制。拥有计算机背景的人则更垂青于Python,Python有非常丰富的工具库(数值计算的NumPy、科学计算的SciPy、统计工具StatsModels,机器学习scikit-learn,可视化matplotlib),并且能够达到接近C语言的运行速度。

通常情况下,R和Python工作时都是将数据集直接存放在计算机内存中的,然而当数据集非常庞大时,计算机内存可能就不太够用了,分布式计算平台就发挥了它的作用。流行的包括Hadoop,然而在Hadoop中运行机器学习却不是一件非常容易的事情。Spark底层封装了Hadoop,却提供了一个更高层的抽象接口,你可以使用Scala、Java、Python、R来编写你的算法,并且Spark已经编写了机器学习库,可以轻松地调用。

Julia是一个旨在获得高计算性能的非常有前景的编程语言,然而也由于Julia仍然是一门新语言,库的数量还不及Python或者R。

在商业领域,Matlab和SAS拥有非常出色的表现。Matlab包含了非常丰富的机器学习算法库,SAS则更加擅长统计分析。

0c3a57fc9c71876441798da9192b6feb.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值