数据分析工具推荐 | adaptive-m6A:从RNA序列中鉴定物种特异性m6A修饰位点 近日,《Briefings in Bioinformatics》发表了一种基于注意力的深度学习方法adaptive-m6A,用于识别多个物种中的m6A位点。
热点综述 | 基于人工智能的多组学分析助力癌症精准医学研究 全面总结了基于人工智能的多组学肿瘤分析的最新进展,重点介绍了基于人工智能的多组学技术在癌症诊断、分类、早期筛查、反应评估和预后预测方面的应用。
Nat. Methods | COMMOT:利用最优运输进行空间转录组细胞间通讯分析 近日《Nature Methods》发表了一种处理复杂分子相互作用和空间约束的最优运输方法:COMMOT,推断空间转录组学中的CCC。
NBT | 使用CytoSPACE对单细胞和空间转录组进行高分辨率比对 近日,《Nature Biotechnology》发表了一种将单个细胞从scRNA-seq图谱映射到空间表达谱的优化方法:CytoSPACE。
NC | 使用GraphST对空间转录组进行空间信息聚类、整合和去卷积 《Nature Communications》发表了一种图自我监督的对比学习方法:GraphST,其充分利用空间转录组学数据,以优于现有方法。
疾病研究资源 | 用于评估疾病相关性的生物医学数据、计算方法和工具 2022年《Briefings in Bioinformatics》发表了一篇综述文章,为当前的疾病关联研究提供了一个系统的概述:总结了用于评估疾病相关性的可用生物医学数据和数据库、计算方法、软件工具/平台等,以促进疾病关联计算方法和工具/平台的开发和应用。
Nature子刊 | 将对应分析(CA)应用于scRNA-seq数据的降维、批量整合和可视化 近日《Scientific Reports》发表了一种基于计数的PCA替代方案:对应分析(correspondence analysis,CA),其基于卡方残差矩阵的分解,避免了失真的对数变换。
热点综述 | 空间多组学技术在肿瘤免疫微环境研究中的应用 2022年《Journal of Biomedical Science》发表了一篇综述文章,回顾了前沿空间组学技术、它们在肿瘤免疫微环境研究中的应用,以及存在的技术挑战。
数据分析工具推荐 | bulkAnalyseR:用于分析和共享批量多组学数据的交互式工具包 《Briefings in Bioinformatics》发表了一个集成了最先进方法的工具包:bulkAnalyseR,可以处理不同的模式数据(转录、表观、时空等),促进顺式,反式和定制调控网络的强大集成和比较。
Brief Bioinform. | 如何使用人工智能进行多种药物相互作用预测? 系统地回顾了人工智能在药物-药物(DDI)、药物-食品(辅料)(DFI)和药物-微生物组(DMI)相互作用中的应用,包括人工智能多重交互的模型、评价指标、算法和数据库等。
NC | Spatial-ID:通过迁移学习和空间嵌入进行空间高分辨转录组数据的细胞注释 一种基于自监督学习的空间转录组(spatially resolved transcriptomics,SRT)细胞注释方法Spatial-ID(SPATIAL cell type IDentifification),它集成了迁移学习和空间嵌入策略。
空转工具盘点 | 空间转录组细胞类型聚类方法综合比较 《Briefings in Bioinformatics》发表了综述文章,根据聚类性能、鲁棒性、计算效率和软件可用性对七个软件工具提供的15种聚类方法进行了综合测试。
BASS:为单细胞分辨率的空间转录组学提供多尺度和多样本分析 BASS,支持单细胞分辨率空间转录组学的多尺度和多样本分析。BASS在单细胞尺度上进行细胞类型聚类,在组织区域尺度上进行空间结构域检测,这两项任务在贝叶斯层次结构模型框架内同时进行。
热点综述 | 肿瘤微环境中的细胞间通信推断和分析:数据资源和计算策略 介绍了 TME 中细胞间通信估计的管道、配体-受体相互作用 (LRI)数据资源和可视化工具,并且主要展示了七种经典的细胞间通讯评分策略,分析了各种细胞间串扰推断方法的优点和局限性。此外,还探讨了细胞间通讯识别过程中的挑战。
Life Med综述 | 时空组学技术在病理应用中的革命性意义 该文章总结了当前已报道的时空组学技术的优缺点,描述了该类技术在肿瘤发病机制的应用进展,阐明了时空组学技术在包括病理检测应用等在内的精准医学领域中的革命性意义,同时也指出了临床数据计算所面临的挑战。