基于语音端点检测的方法有很多,从历史的发展来看。
首先是基于短时能量和短视过零率的端点检测=〉各变换域=〉人工神经网络=〉基于倒谱距离的检测算法=〉基于谱熵的方法=〉几何门限的方法=〉sigma函数=〉近些年的从分形技术和混沌理论引入的端点检测。
作为最早的短时能量与过零率的检测方法,比较简单,当然也有很大的缺陷:在SNR比较低的情况下,准确度大打折扣,严重的话会失效。以目前而言,先研究这个简单的再说。
1,实现原理。
1.1基于两个公式,即短时能量和短时过零率。
1.2理论基础:语音信号一般可分为无声段、清音段和浊音段。无声段是背景噪声段,平均能量最低;浊音段为声带振动发出对应的语音信号段,平均能量最高;清音段是空气在口腔中的摩擦、冲击或爆破而发出的语音信号段,平均能量居于前两者之间。清音段和无声段的波形特点有明显的不同,无声段信号变化较为缓慢,而清音段信号在幅度上变化剧烈,穿越零电平次数也多。经验表明,通常清音段过零率最大。端点检测就是首先判断/有声0还是/无声0,如果有声,则还要判断是/清音0还是/浊音0。为正确地实现端点检测,一般综合利用短时能量和过零率两个特征,采用/双门限检测法0。
1.3基本思路:根据信号设置三个阈值:能量阈值,TL,TH;过零率阈值ZCR,当某帧信号大于TL或者大于ZCR时,认为信号的开始、起点,当大于TH时,则认为正式的语音信号,如果保持一段时间,则确认这信号即所需信号。
2,matlab实现
2.1 matlab语句分析。
function [x1,x2] = vad(x)
%幅度归一化到[-1,1]
x = double(x);
x = x / max(abs(x));
%常数设置
FrameLen = 240;%帧长为240点
FrameInc = 80;%帧移为80点
amp1 = 10;%初始短时能量高门限
amp2 = 2;%初始短时能量低门限
zcr1 = 10;%初始短时过零率高门限
zcr2 = 5;%初始短时过零率低门限
maxsilence = 8; % 8*10ms = 80ms
%语音段中允许的最大静音长度,如果语音段中的静音帧数未超过此值,则认为语音还没结束;如果超过了
%该值,则对语音段长度count进行判断,若count
%状态0;若count>minlen,则认为语音段结束;
minlen = 15; % 15*10ms = 150ms
%语音段的最短长度,若语音段长度小于此值,则认为其为一段噪音
status = 0; %初始状态为静音状态
count = 0; %初始语音段长度为0
silence = 0; %初始静音段长度为0
%计算过零率
tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);%分帧,所得矩阵为fix((x(1:end-1)-FrameLen+FrameInc)/FrameInc)*FrameLen
tmp2 = enframe(x(2:end) , FrameLen, FrameInc);%分帧,所得矩阵为fix((x(2:end)-FrameLen+FrameInc)/FrameInc)*FrameLen
signs = (tmp1.*tmp2)<0;%tmp1.*tmp2所得矩阵小于等于零的赋值为1,大于零的赋值为0
diffs = (tmp1 -tmp2)>0.02;%tmp1-tmp2所得矩阵小于0.02的赋值为0,大于等于0.02的赋值为1
zcr = sum(signs.*diffs, 2);
%计算短时能量
%amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2);
amp = sum(abs(enframe(x, FrameLen, FrameInc)), 2);
%调整能量门限
amp1 = min(amp1, max(amp)/4);
amp2 = min(amp2, max(amp)/8);
%开始端点检测
x1 = 0;
x2 = 0;
for n=1:length(zcr) %length(zcr)得到的是整个信号的帧数
goto = 0;
switch status
case {0,1} % 0 = 静音, 1 = 可能开始
if amp(n) > amp1 % 确信进入语音段
x1 = max(n-count-1,1);
status = 2;
silence = 0;
count = count + 1;
elseif amp(n) > amp2 | ... % 可能处于语音段
zcr(n) > zcr2
status = 1;
count = count + 1;
else % 静音状态
status = 0;
count = 0;
end
case 2, % 2 = 语音段
if amp(n) > amp2 | ... % 保持在语音段
zcr(n) > zcr2
count = count + 1;
else % 语音将结束
silence = silence+1;
if silence
count = count + 1;
elseif count
status = 0;
silence = 0;
count = 0;
else % 语音结束
status = 3;
end
end
case 3,
break;
end
end
count = count-silence/2;
x2 = x1 + count -1;
subplot(311) %subplot(3,1,1)表示将图排成3行1列,最后的一个1表示下面要画第1幅图
plot(x)
axis([1 length(x) -1 1]) %函数中的四个参数分别表示xmin,xmax,ymin,ymax,即轴的范围
ylabel('Speech');
line([x1*FrameInc x1*FrameInc], [-1 1], 'Color', 'red');
%这里作用为用直线画出语音段的起点和终点,看起来更直观。第一个[]中的两个参数为线起止点的横坐标,
%第二个[]中的两个参数为线起止点的纵坐标。最后两个参数设置了线的颜色。
line([x2*FrameInc x2*FrameInc], [-1 1], 'Color', 'red');
subplot(312)
plot(amp);
axis([1 length(amp) 0 max(amp)])
ylabel('Energy');
line([x1 x1], [min(amp),max(amp)], 'Color', 'red');
line([x2 x2], [min(amp),max(amp)], 'Color', 'red');
subplot(313)
plot(zcr);
axis([1 length(zcr) 0 max(zcr)])
ylabel('ZCR');
line([x1 x1], [min(zcr),max(zcr)], 'Color', 'red');
line([x2 x2], [min(zcr),max(zcr)], 'Color', 'red');
2.2由语句提出的程序流程。
由上边的程序可以看出程序流程为:
3,mat lab程序中的部分解释说明
3.1流程图的说明
amp2,amp1为能量的两个阈值,前者为小的,后者为大的,zcr2为过零率的阈值小值,当>amp2 or >zcr2,count开始加1,在此期间如果有不满足该条件的话,count立即为0,回到0状态。如果>amp1时,count加1,然后进入2状态。在2状态里边,当>amp2
or >zcr2,count也1,如果不满足条件,则Silence+1,如果Silence即在2状态期间处于静音状态满足结束时的静音条件,则判断所有计数的信号即count的值是否满足最小的语音信号长度值,如果满足,则找到结束点,否则认为是噪声,重新开始。如果Silence即在2状态期间处于静音状态不足结束时的静音条件,则count继续加1。
3.2起点和终点的判断
即判断X1,X2。根据程序x1=max(n-count-1,1);n为找到>amp1时,此时的贞的序列值。而count为在这之前的>amp2
or >zcr2,的贞的个数。一般突发信号从无慢慢到有,如果N=6,COUNT=2,则起点从第三帧开始。很好理解。
对于X2,有count = count-silence/2;x2 = x1 + count - 1;总count值为>amp2 or
>zcr2开始,到判断超过最小静音为止。而当进入silence加的时候,已经为静音阶段了。当silence=6时,便结束了,然后X2的计算方法,基本了解,但silence/2感觉可以不要也行,后边的-1也感觉可以不要。
3.3 enframe函数的说明
前边算能量,过零率都是基于帧来计算的,而enframe函数是用来把信号进行分帧的。
其代码如下:
function f=enframe(x,win,inc)%定义函数。
nx=length(x(:)); %x(:)的作用是把x给弄成一个向量,x为一行,则变成一列,如果为矩阵,则按每一列的顺序排成一列。得出的nx为序列的数据个数。
nwin=length(win);
if (nwin == 1)
len = win; %如果win中就一个数,则len就=该数,此例中为256个点。即每帧长
else
len = nwin; %如果有多个数,则len=个数。
end
if (nargin < 3) % nargin返回的是函数输入的个数,如果中间有变量,返回的是负值。
inc = len; %也就是说,如果函数enframe的输入只有两个的话,系统就自动赋inc
end
nf = fix((nx-len+inc)/inc);%这个比较关键,nf为分帧的组数,结合下边的可以分析这里
各参数的意义,len为帧长,inc为未覆盖的数据,nx为整个数
据量。假设数据为1:30,len为10,未覆盖为5,则nf=5,5
组,第一组为1,2,……10,第二组为6,7,……15,依次列
推,便可知其缘由,即(nx-len)/inc + 1;
f=zeros(nf,len); %构成以组数为行,帧长为列的矩阵。
indf= inc*(0:(nf-1)).'; %indf为一列nf个数据,即0到nf-1的inc倍,即分好了每幀起点。
inds = (1:len); %构成了长度为len的一行。
f(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:));
%上一条语句为整个算法的核心部分了,indf(:,ones(1,len))把indf的
第一列扩展了nf*len的矩阵。同理inds(ones(nf,1),:)把inds第一行扩
展为nf*len的矩阵,相加得到
[ 1 2 3……len
inc+1 inc+2 inc+3……inc+len
2*inc+1………………2*inc+len
。
。…………………………………]然后就按照这个矩阵从x中把数据
给选出来,达到分帧的目的。
if (nwin > 1) %nwin大于1的情况就不说了。
w = win(:)';
f = f .* w(ones(nf,1),:);
end
3.4过零率的计算
其语句如下:
tmp1 = enframe(x(1:end-1), FrameLen,inc);
tmp2 = enframe(x(2:end) , FrameLen,inc);
signs = (tmp1.*tmp2)<0;%对于tmp1.*tmp2算出来的矩阵,矩阵中<0的数都为1,其他
为0,后边也是一样的。
diffs = (tmp1 - tmp2)>0.02;
zcr = sum(signs.*diffs,2);
假设数据量为1,2……21,帧长为10,inc为5,则
tmp1为[1 2 3 4 5 6 7 8 9 10
6 7 8 9 10 11 12 13 14 15
11 12 13 14 15 16 17 18 19 20]
tmp2为[2 3 4 5 6 7 8 9 10 11
7 8 9 10 11 12 13 14 15 16
12 13 14 15 16 17 18 19 20 21]
在这里注意一个问题:即数组的乘法与矩阵的乘法是不一样的。数组乘法:A.*A,矩阵乘法:A*A’。前者有‘.’号,算出来的结果是在矩阵A中每一个数据平方,而后者成为另一个数组,行与列相乘然后相加作为一个值。
在这里tmp1.*tmp2为数组相乘,第一个数乘以第二个数,第二个数乘以第三个数,依次,从而判断两者的符号,<0的为1。
然后进行相减,第一个减第二个数,第二个减第三个数……,>0.02,为什么>0.02了?首先得到的signs是真正的过零率,但得限制能量,因为对于噪音的话,也会在0点附近上下摆动,但噪声能量显然是没有语音大的,根据实际情况,所以选择>0.02,其次感觉diffs
= abs((tmp1 - tmp2))>0.02;%?就是加个绝对值,因为对于负值-正值也会满足条件,结果验证也不影响。
3.5能量的计算
语句为:
amp = sum((abs(enframe( x, FrameLen, inc))).^2, 2);
通过对enframe函数的分析,就比较容易了,enframe对x分帧后,绝对值然后平方,最后是sum(x,2)2代表是各列相加最后得到的是一列数据,即各帧的平方和。从中可以看出矩阵处理数据的方便性,一个矩阵就把各帧的结果给弄出来了。
最后运行结果为图:
注:实验过程中发现能量出计算好像有问题,应为下面两句(filter()函数可不要,所以采用下面的,上面注释掉了),特记,
%amp = sum((abs(enframe(filter([1 -0.9375], 1, x), FrameLen, inc))).^2, 2);
amp = sum((abs(enframe( x, FrameLen, inc))).^2, 2);
转自:http://home.eeworld.com.cn/my/space-uid-436810-blogid-82338.html