引言:在前面的文章中,我们理解了DTFT与DFT的关系,接下来就是要研究DFT的应用。在DFT的应用中,利用DFT的循环卷积定理进行线性卷积的快速运算这一应用是极其重要的,理解这一重要应用,才能更加清晰理解DFT的快速运算---FFT的作用。本文将从原理入手,给出实际例子,为你细致讲解用DFT实现线性卷积快速运算的过程!
首先交代背景,我们知道,在实际的应用中,计算一个离散时间系统的输出为:输入离散时间序列和系统单位脉冲响应的线性卷积。然而,线性卷积的计算量是很大的,这牵制了计算机的运算速度,因此我们希望运用循环卷积定理,借助DFT的快速算法FFT,从循环卷积和线性卷积的关系入手,解决这一问题,快速得到系统的输出。
一.循环卷积定理
循环卷积定理指的是:两个有限长序列循环卷积的结果得DFT,等于这两个序列单独做DFT后的乘积,具体公式为下图:

之所以引入这一定理,是因为DFT存在一种快速运算---FFT(后面文章会讲到),FFT可以把计算时间大大缩短。因此只要计算出两个序列的DFT,将他们相乘,再把结果作IDFT,就可以得到两个有限长序列的循环卷积。
注意!我们的目标是求两个序列的线性卷积,因此接下来的任务是找到循环卷积的关系