java怎么表示正无穷大_无穷大与无穷大的比较

e072afe8cb4596197fbc0614a6f7ceb9.png

7fdac058cf3c7820d868a24143699b88.png

无穷大与无穷大

比大小

1cfb622989db52fbe90b1e328d3d4a60.png a3e4c1558884bfc638ff2fdc988d69b1.png有一些无穷大的数,它们比我们所能写出来的无论多长的数字都要大。例如:所有的整数的个数和一条线上所有的几何点的个数,显然都是无穷大的。难道我们能比较一下上面那两个无穷大的数字,哪个更大一些吗? a3e4c1558884bfc638ff2fdc988d69b1.png “所有整数的个数和一条线上所有几何点的个数,究竟哪个更大些?”--这个问题有意义吗?乍一看,提这个问题可真是头脑发昏,但是,著名数学家康托尔(Georg Cantor)首先思考了这个问题。因此,他确实可被称为“无穷大数算术”的奠基人。

当我们要比较几个无穷大的数的大小时,就会面临这样的一个问题:这些数既不能读出来,也无法写出来,该怎样比较呢?这下子,我们自己可有点像一个想要弄清自己的财物中,究竟是玻璃珠子多,还是铜币多的原始部族人了。那些人只能数到三。难道他会因为数不清大数而放弃比较珠子和铜币数目的打算?根本不会如此。如果他足够聪明,他一定会通过把珠子和铜币逐个相比的办法来得出答案。他可以把一粒珠子和一枚铜币放在一起,另一粒珠子和另一枚铜币放在一起,并且一直这样做下去。如果珠子用光了,而还剩下些铜币,他就知道,铜币多于珠子;如果铜币先用光了,珠子却还有多余,他就明白,珠子多于铜币;如果两者同时用光,他就晓得,珠子和铜币数目相等。

康托尔所提出的比较两个无穷大数的方法正好与此相同:我们可以给两组无穷大数列中的各个数一一配对。如果最后这两组都一个不剩,这两组无穷大就是相等的;如果有一组还有些没有配出去,这一组就比另一组大些,或者说强些。

这显然是合理的、并且实际上也是唯一可行的比较两个无穷大数的方法。但是,当你把这个方法讨诸实用时,你还得准备再吃一惊。举例来说,所有偶数和所有奇数这两个无穷大数列,你当然会直觉地感到它们的数目相等。应用上述法则也完全符合,因为这两组数间可建立如下的一一对应的关系。

9c65c670a28ffd704f5309ab9bf4e28b.png

但是,且慢。你再想一想:所有整数(奇偶数都在内)的数目和单单偶数的数目,哪个大呢?当然,你会说前者大一些,因为所有的整数不但包含了所有的偶数,还要加上所有的奇数啊。但这不过是你的印象而已。只有应用上述比较两个无穷大数的法则,才能得出正确的结果。如果你应用了这个法则,你就会吃惊地发现,你的印象是错误的。事实上,下面就是所有整数和偶数的一一对应表:

8de2362158138e207e1a22cb9bc0c89c.png

按照上述比较无穷大数的规则,我们得承认,偶数的数目正好和所有整数的数目一样大。当然,这个结论看来是十分荒谬的,因为偶数只是所有整数的一部分。但是不要忘了,我们是在与无穷大数打交道,因而就必须做好遇到异常的性质的思想准备。

在无穷大的世界里,部分可能等于全部!关于这一点,著名德国数学家希尔伯特(David Hilbert)有一则故事说明的再好不过了。据说在他的一篇讨论无穷大的演讲中,他曾用下面的话来叙述无穷大的似非而是的性质:

我们设想有一家旅店,内设有限个房间,而所有的房间都已客满。这时来了位新客,想订个房间。“对不起,”旅店主说,“所有的房间都住满了。”现在再设想另一家旅店,内设无限个房间,所有的房间也都客满了这时也有一位新客来临,想订个房间。

“不成问题!”旅店主说。接着,他就把一号房间里的旅客移至二号房间,二号房间的旅客移到三号房间,三号房间的旅客移到四号房间,等等,这一来,新客就住进了已被腾空的一号房间。

我们再设想一座有无限个房间的旅店,各个房间也都住满了。这时,又来了无穷多位要求订房间的客人。

“好的,先生们,请等一会儿。”旅店主说。

他把一号房间的旅客移到二号房间,把二号房间的旅客移到四号房间,三号房间的旅客移到六号房间,等等,等等。现在,所有的单号房间都腾出来了。新来的无穷多位客人可以住进去了。

按照比较两个无穷大数的康托尔法则,我们还能证明,所有的普通分数(如3/7,375/8等)的数目和所有的整数相同。把所有的分数按照下述规则排列起来:先写下分子与分母之和为2的分数,这样的分数只有一个,即;1/1然后写下两者之和为3的分数,即1/2和2/1;再往下是两者之和为4的,即1/3,2/2,3/1。这样做下去,我们可以得到一个无穷的分数数列,它包括了所有的分数。现在,在这个数列旁边写上整数数列,就得到了无穷分数与无穷整数的一一对应。可见,它们的数目又是相等的!

你可能会说:“是啊,这一切都很妙,不过,这是不是就意味着,所有的无穷大数都是相等的呢?如果是这样,那还有什么可比的呢?”

不,事情并不是这样。人们可以很容易地找出比所有整数和所有分数所构成的无穷大数还要大的无穷大数来。

如果研究一下前面出现过的那个比较一条线段上的点数和整数的个数的多少的问题,我们就会发现,这两个数目是不一样大的。线段上的点数要比整数的个数多得多。为了证明这一点,我们先来建立一段线段(比如说1寸长)和整数数列的一一对应关系。

这条线段上的每一点都可用这一点到这条线的一端的距离来表示,而这个距离可以写成无穷小数的形式,如

   0.7350624780056......

  或者

   0.38250375632......

现在我们所要做的,就是比较一下所有整数的数目和所有可能存在的无穷小数的数目。那么,上面写出的无穷小数和3/7,375/8这类分数有什么不同呢?

大家一定还记得在算术课上学过的这样一条规则:每一个普通分数都可以分成无穷循环小数。如。我们已经证明过,所有分数的数目和所有整数的数目相等,所以,所有循环小数的数目必定与所有整数的数目相等。但是,一条线段上的点可不能完全由循环小数表示出来,绝大多数的点是由不循环的小数表示的。因此就很容易证明,在这种情况下,一一对应的关系是无法建立的。

假定有人声称他已经建立了这种对应关系,并且,对应关系具有如下形式:

e6a1920b3b74aed3b416cbe906f8610e.png

当然,由于不可能把无穷多个整数和无穷多个小数一个不漏地写光,因此,上述声称只不过意味着此人发现了某种普遍规律(类似于我们用来排列分数的规律),在这种规律的指导下,他制定了上表,而且任何一个小数或迟或早都会在这张表上出现。

不过,我们很容易证明,任何一个这类的声称都是站不住脚的,因为我们一定还能写出没有包括在这张无穷表格之中的无穷多个小数。怎么写呢?再简单不过了。让这个小数的第一小数位(十分位)不同于表中第一号小数的第一小数位,第二小数位(百分位)不同于表中第二号小数的第二小数位,等等。这个数可能就是这

个样子(还可能是别的样子):

3d1ea4de7cefc898ce25caa6a0501006.png

这个数无论如何在上表中是找不到的。如果此表的作者对你说,你的这个数在他那个表上排在第一百三十七号(或其他任何一号),你就可以立即回答说:“不,我这个数不是你的那个数,因为这个数的第一百三十七小数位和你那个数的第一百三十七小数位不同。”

这么一来,线上的点和整数之间的一一对应关系就建立不起来了。也就是说,线上的点数所构成的无穷大数大于(或强于)所有整数或分数所构成的无穷大数。(老实说我还有点搞不明白,为什么建立不了一一对应的关系就说明: 线上的点数强于所有整数或者分数构成的无穷大数,而不是相反16bde8b9c235f6687825edd742a4ae87.gif 直觉上,线上的点数可能要强一点,虽然我也直觉整数比偶数多。。。直觉来说,整数虽然是无限的,但分布是离散的,而线上的点,长度上讲是有限的,但却是连续的。感觉上连续的数比离散的要强一点5f6b58c4a22216d21ea877e7cdbff7a8.gif)

刚才所讨论的线段是“1寸长”。不过很容易证明,按照“无穷大数算术”的规则,不管多长的线段都是一样。事实上,1寸长的线段也好,1尺长的线段也好,1里长的线段也好,上面的点数都是相同的。AB和AC为不同长度的两条线段,现在要比较它们的点数。过AB的每一个点做BC的平行线,都会与AC相交,这样就形成了一组点。如D与D,E与E,F与F等。对AB上的任意一点,AC上都有一个点和它相应,反之亦然。这样,就建立了一一对应的关系。可见,按照我们的规则,这两个无穷大数是相等的。

通过这种对无穷大数的分析,还能得到一个更加令人惊异的结论:平面上所有的点数和线段上所有的点数相等。为了证明这一点,我们来考虑一条长1寸的线段AB上的点数和边长1寸的正方形CDEF上的点数。

e2c6799bb44c1cdebeb539039ffefad4.png

假定线段上某点的位置是0.7512036......。我们可以把这个数按奇分位和偶分位分开,组成两个不同的小数:

  0.7108......

  和

  0.5236......

以这两个数分别量度正方形的水平方向和垂直方向,得出一个点,这个点就叫做原来线段上那个点的“对偶点”。反过来,对于正方形内的任意一点,比如说由0.4835,0.9907这两个数描述的点,我们把这两个数掺到一起,就得到了线段上的相应的“对偶点”0.49893057。

很清楚,这种做法可以建立那两组点的一一对应关系。线段上的每一个点在平面上都有一个对应的点,平面上的每一个点在线段上也有一个对应点,没有剩下来的点。因此,按照康托尔的标准,正方形内所有点数所构成的无穷大数与线段上点数的无穷大数相等。

用同样的方法,我们也容易证明,立方体内所有的点数和正方形或线段上的所有点数相等,只要把代表线段上一个点的无穷小数分作三部分,并用这三个新小数在立方体内找“对偶点”就行了。和两条不同长度线段的情况一样,正方形和立方体内点数的多少与它们的大小无关。

尽管几何点的个数要比整数和分数的数目大,但数学家们还知道比它更大的数。事实上,人们已经发现,各种曲线,包括任何一种奇形怪状的样式在内,它们的样式的数目比所有几何点的数目还要大。因此,应该把它看作是第三级无穷数列。

按照“无穷算术”的奠基者康托尔的意见,无穷大数是用希伯来字母阿莱夫表示的,在字母的右下角,再用一个小号数字表示这个无穷大数的级别。这样一来,数目字(包括无穷大数)的数列就成为

da2d0d28fb5041f329e4e82efaa1aae5.png

我们说“一条线段上有阿莱夫1个点”或曲线的样子有阿莱夫2种“,就和我们平常说“世界有七大洲”或“一付扑克牌有五十四张”一样。

134af57438f3df0a7223dae0cbedd631.png

  结束关于无穷大数的讨论时,我们要指出,无穷大数的级只要有几个,就足够把人们所能想象出的任何无穷大数都包括进去了。大家知道,阿莱夫0表示所有整数的数目,阿莱夫1示所有几何点的数目,阿莱夫2表示所有曲线的数目,但到目前为止,还没有人想得出一种能用阿莱夫3来表示的无穷大数来。看来,头三级无穷大数就足以包括我们所能想到的一切无穷大数了。因此,我们现在的处境,正好跟我们前面的原始部族人相反:他有许多个儿子,可却数不过三;我们什么都数得清,却又没有那么多东西让我们来数!

来源:伽莫夫《从一到无穷大》

608119ab460fcfacb47837370d161fdb.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值