arcgis js 4 网络分析_GWR|ArcGIS中地理加权回归的操作与解读(一)总体思路与空间自相关分析...

本文介绍了地理加权回归(GWR)的基本概念,强调了GWR在处理空间非平稳性数据时的优势。通过全局和局部莫兰指数分析,确定是否适用GWR。在ArcGIS中,首先进行空间自相关分析,然后执行GWR,注意数据集规模和带宽选择。最后,检查GWR模型的残差空间自相关以评估模型指定的正确性。
摘要由CSDN通过智能技术生成
b1663c281e2ce308f53e67fcd24aebaf.gif

点击上方蓝色字体,关注我们

96cdf99001587b13f3ddbeabce41c2a9.png

站在巨人的肩膀上,俯瞰世界。

几点说明:

1.本文使用的软件是:ArcGIS10.7

2.本文从应用角度出发,侧重于操作方法,有关理论基础和数学推导可参考其他公开发表的论文

3.主要参考来源:ArcGIS帮助文档、公众号:曾冰在路上,虾神daxialu

4.考虑到本人水平有限,如有错误,欢迎大家批评指教!

5.如果本文对您有所帮助,欢迎点赞、转发与在看!感谢!

6.关注公众号,未来会分享更多精彩内容!希望我们能共同成长!

01

地理加权回归(GWR)简介

地理加权回归(Geographically weighted regression, GWR)是一种空间分析技术,广泛应用于地理学及涉及空间模式分析的相关学科。GWR通过建立空间范围内每个点处的局部回归方程,来探索研究对象在某一尺度下的空间变化及相关驱动因素,并可用于对未来结果的预测。由于它考虑到了空间对象的局部效应,因此其优势是具有更高的准确性。

在空间分析中,观测数据一般按照给定的地理位置作为采样单元进行采样,随着地理位置的变化,变量间的关系或者结构会发生改变,即GIS中所说的“空间非平稳性 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值