分式化简结果要求_初中数学“分式”知识点汇总(含典型例题解析)

本文详细介绍了初中数学中分式的基础知识,包括分式的通分、约分,分式的乘除运算法则,以及解分式方程的步骤与注意事项。文章通过典型例题解析,帮助读者理解和掌握分式运算与方程的解决方法,强调了分式运算中的约分技巧和避免增根的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2138284afd43f805aea7c43feef65d9b.png

要点梳理

一、分式知识点

1、分式的定义 如果A、B表示两个整式,并且B中含有字母,那么式子 36dffe1e6a71b2cc2830767b9d9d414d.png 叫做分式。 2、分式有意义、无意义的条件 分式有意义的条件是分式的分母不等于0;分式无意义的条件是分式的分母等于0。 3、分式值为零的条件: 分式 36dffe1e6a71b2cc2830767b9d9d414d.png =0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。) 4、分式的基本性质 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。   

用式子表示为f0639885e691c4c9354b04c13b23e5cf.pngd1f9a8fddff4732f90ed91c3474b7919.png(其中A、B、C是整式C≠0)

5、分式的通分 分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:

(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;

(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;

(3)如果分母是多项式,一般应先分解因式。

6、分式的约分

分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;

(2)找公因式的方法:

① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;

②当分子、分母都是多项式时,先把多项式因式分解。

二、分式的运算知识点

1、分式乘法法则

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

2、分式除法法则

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

用式子表示是:9895d644de4929980e955b7b96181021.png

分式的乘除混合运算统一为乘法运算。

①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;

②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;

③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。

分式乘方法则:分式乘方要把分子、分母各自乘方。

用式子表示是: 18b626889daa7476552ce282a95adee7.png(其中n是正整数)

分式的加减法则:

同分母的分式相加减,分母不变,把分子相加减。

  用式子表示为:c6bbc725415b32de093846d8a70dbd5d.png

异分母的分式相加减,先通分,转化为同分母分式,然后再加减。

用式子表示为:dd8d58dcb6e28db7954510a1401d5124.png

注意

(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;

(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;

(3)运算时顺序合理、步骤清晰;

(4)运算结果必须化成最简分式或整式。

分式的混合运算

分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。

三、分式方程知识点

1、分式方程的概念

分母中含有未知数的方程叫分式方程.

要点诠释:

(1)分式方程的重要特征:

①是等式;

②方程里含有分母;

③分母中含有未知数.

(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.

(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.

2、分式方程的解法

解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。因为解分式方程时可能产生增根,所以解分式方程时必须验根。

解分式方程的一般步骤:

(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);

(2)解这个整式方程,求出整式方程的解;

(3)检验:将求得的解代入最简公分母,若137bad623d412200dbab6a608cb57711.png最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式137bad623d412200dbab6a608cb57711.png方程无解.

3、解分式方程产生增根的原因

方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.

产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.

要点诠释

(1)增根是在解分式方程的第一步“去分母”时产生的。根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根。

(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的。

4、分式方程的应用

分式方程的应用主要就是列方程解应用题.

列分式方程解应用题按下列步骤进行:

(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;

(2)设未知数;

(3)找出能够表示题中全部含义的相等关系,列出分式方程;

(4)解这个分式方程;

(5)验根,检验是否是增根;

(6)写出答案。

典型例题

类型一、判别分式方程

1、下列方程中,是分式方程的是(   )

A.08b0501d0e78fe83075b077f6fc78a53.png  

B.537337bb279d47a4fb7909bfc609fda8.png

C.9450a44e28bb79a988e41984857084a8.png

D.360ad3ad83db37fefe7c67efd33e82c7.png,(b84b177436582d9674089f44d383fbf4.pngd21403aaddf619b9f967d482d6568404.png为非零常数)

【答案】B;

【解析】A、C两项中的方程尽管有分母,但分母都是常数;D项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有B项中的方程符合分式方程的定义。

【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数。

类型二、解分式方程

2、 解分式方程(1)e6ab17a4f8ef1335aa348a7a0b86fd51.png;(2)ca9c6bd6804921b0208d1ca40f7bc364.png

【答案与解析】

解:(1)e6ab17a4f8ef1335aa348a7a0b86fd51.png

将方程两边同乘ddc5484994e1c0216e950a220e82b141.png,得

6fb4ebd81fad0b4d3e326f4ce17feb43.png

解方程,得f6f2c41c6ac110387dfbb079c18e7eed.png

检验:将f6f2c41c6ac110387dfbb079c18e7eed.png代入42ddb2db7c09f34baf6f5905a16c239c.png,得032571b11bbd6eb8e5336513e2092c51.png

∴ f6f2c41c6ac110387dfbb079c18e7eed.png是原方程的解.

(2)ca9c6bd6804921b0208d1ca40f7bc364.png

方程两边同乘以b013bf03fc85f22b15a16e83501cbf7b.png,得a6ff7da12b979942c36dec03297a97ae.png

解这个方程,得36bb34a59f1c1f5ed863eadba54a7beb.png

检验:把36bb34a59f1c1f5ed863eadba54a7beb.png代入最简公分母,得2×5×1=10≠0

∴  原方程的解是36bb34a59f1c1f5ed863eadba54a7beb.png

【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项。特别提醒:解分式方程时,一定要检验方程的根。

举一反三:

【变式】解方程:e20273d322a7ca8196b1a3bd4ec616c2.png

【答案】

解:e20273d322a7ca8196b1a3bd4ec616c2.png

方程两边都乘b50daecbe297992c37929251beec932a.png,得86843e4f6b147703025e9a4f5950c658.png

解这个方程,得68b803f32f56c410b8bb504fe1598c4c.png

检验:当68b803f32f56c410b8bb504fe1598c4c.png时,4bb14e4752392ac96e848c02c4736931.png

∴  68b803f32f56c410b8bb504fe1598c4c.png是增根,

∴  原方程无解。

类型三、分式方程的增根

3、080bb53ac11c4678db4ab676b56c0e19.png为何值时,关于b0b5d018caf498f2b288bfff49c8c38c.png的方程fdc5b0bec6b3303bc2a138f06b19fcf4.png会产生增根?

【思路点拨】若分式方程产生增根,则85445eeff2676e713f35dbadfe9528ae.png,即36bb34a59f1c1f5ed863eadba54a7beb.png5f5d31212b9ecd21bace691bb9f99945.png,然后把3d31131766c4576a76de83337f83ba34.png代入由分式方程转化得的整式方程求出080bb53ac11c4678db4ab676b56c0e19.png的值。

【答案与解析】

解:方程两边同乘f920542c4fc0ffffce8aae499203504f.png约去分母,

725fa5e9e5070c080896351e0b670648.png

整理得b23674cbb7096b22034be73a5da164f3.png

∵  原方程有增根,

∴  85445eeff2676e713f35dbadfe9528ae.png,即36bb34a59f1c1f5ed863eadba54a7beb.png5f5d31212b9ecd21bace691bb9f99945.png

36bb34a59f1c1f5ed863eadba54a7beb.png代入b23674cbb7096b22034be73a5da164f3.png,解得8a4c17a33e6d82d10f0b764236021404.png

5f5d31212b9ecd21bace691bb9f99945.png代入b23674cbb7096b22034be73a5da164f3.png,解得4c0a1104b4f203be005c621b343a60d9.png

所以当8a4c17a33e6d82d10f0b764236021404.png4c0a1104b4f203be005c621b343a60d9.png时,方程会产生增根。

【总结升华】处理这类问题时,通常先将分式方程转化为整式方程,再将求出的增根代入整式方程,即可求解。

举一反三:

【变式】如果方程8b61adf7f5f22ab6d42b076f2274ef2c.png有增根,那么增根是________.

【答案】36bb34a59f1c1f5ed863eadba54a7beb.png

提示:因为增根是使分式的分母为零的根,由分母e69551898e46c6dbd9d1d6797525c8ee.png8b44b7cfc0a11ea156d68b2f757810ac.png可得36bb34a59f1c1f5ed863eadba54a7beb.png。所以增根是36bb34a59f1c1f5ed863eadba54a7beb.png

类型四、分式方程的应用

4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等。求甲、乙两班每小时各种多少棵树?

【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等。

【答案与解析】

解:设甲班每小时种ac410a7cd94f6076b65f0a904ab2fa98.png棵树,则乙班每小时种8ba6c3045acf16c1b069586a95e42e4f.png棵树。

由题意可得f8c6b22eff5104917bc753fa29c4f2ed.png,解这个方程,得4bbd9faa2e1533c3e7472d6c0dc926fc.png

经检验4bbd9faa2e1533c3e7472d6c0dc926fc.png是原方程的根且符合题意。

所以9576bb176d682e11ac915fbbd86df9be.png (棵)

答:甲班每小时种20棵树,乙班每小时种22棵树。

【总结升华】解此题的关键是设出未知数后,用含ac410a7cd94f6076b65f0a904ab2fa98.png的分式表示甲、乙两班种树所用的时间。

举一反三

【变式】两个工程队共同参与一个建筑工程,甲队单独施工1个月完成总工程的b1ba0cef19165c588a2b7ec598ddcc09.png,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?

【答案】

解:设乙队单独施工1个月能完成工程的9e5687e1f9bef7791e860ae8652964b4.png,总工程量为1。

根据工程的实际进度,得fb35cc6f60ee8d9779ed70fc172283b0.png

方程两边同时乘以2ac3c4161640e1d10508918b1dcb91f8.png,得39d1d83557318f586e97911faba50e72.png

   解这个方程得fdd74921247ce8aca287308c546c51dd.png

   检验:当fdd74921247ce8aca287308c546c51dd.png时,2ac3c4161640e1d10508918b1dcb91f8.png=6≠0,

   所以fdd74921247ce8aca287308c546c51dd.png是原分式方程的解。

由上可知,若乙队单独工作1个月可以完成全部任务,对比甲队1个月完成任务的b1ba0cef19165c588a2b7ec598ddcc09.png,可知乙队施工速度快。

答:乙队施工速度快。

3aed798f0900a731fc7f3ac174811d84.png

关注我们

0eeff7af218108decc3d8b4fd0ec0201.png

获取更多

博文教育你身边的教育专家!

1227cc29438c3a455288166289c5f6f6.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值