一、分式知识点
1、分式的定义 如果A、B表示两个整式,并且B中含有字母,那么式子

用式子表示为,
(其中A、B、C是整式C≠0)
通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:
(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;
(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;
(3)如果分母是多项式,一般应先分解因式。
6、分式的约分分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;
(2)找公因式的方法:
① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;
②当分子、分母都是多项式时,先把多项式因式分解。
二、分式的运算知识点
1、分式乘法法则
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
2、分式除法法则
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示是:
分式的乘除混合运算统一为乘法运算。
①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;
②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;
③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。
分式乘方法则:分式乘方要把分子、分母各自乘方。
用式子表示是: (其中n是正整数)
分式的加减法则:
同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:
异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:
注意
(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;
(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;
(3)运算时顺序合理、步骤清晰;
(4)运算结果必须化成最简分式或整式。
分式的混合运算
分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。
三、分式方程知识点
1、分式方程的概念分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:
①是等式;
②方程里含有分母;
③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.
2、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。因为解分式方程时可能产生增根,所以解分式方程时必须验根。
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式
方程无解.
方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.
产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.
要点诠释(1)增根是在解分式方程的第一步“去分母”时产生的。根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根。
(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的。
4、分式方程的应用
分式方程的应用主要就是列方程解应用题.
列分式方程解应用题按下列步骤进行:
(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;
(2)设未知数;
(3)找出能够表示题中全部含义的相等关系,列出分式方程;
(4)解这个分式方程;
(5)验根,检验是否是增根;
(6)写出答案。
典型例题类型一、判别分式方程
1、下列方程中,是分式方程的是( )
A.
B.
C.
D.,(
,
为非零常数)
【答案】B;
【解析】A、C两项中的方程尽管有分母,但分母都是常数;D项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有B项中的方程符合分式方程的定义。
【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数。
类型二、解分式方程
2、 解分式方程(1);(2)
【答案与解析】
解:(1),
将方程两边同乘,得
解方程,得
检验:将代入
,得
∴ 是原方程的解.
(2),
方程两边同乘以,得
解这个方程,得
检验:把代入最简公分母,得2×5×1=10≠0
∴ 原方程的解是
【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项。特别提醒:解分式方程时,一定要检验方程的根。
举一反三:
【变式】解方程:
【答案】
解:,
方程两边都乘,得
,
解这个方程,得,
检验:当时,
,
∴ 是增根,
∴ 原方程无解。
类型三、分式方程的增根
3、为何值时,关于
的方程
会产生增根?
【思路点拨】若分式方程产生增根,则,即
或
,然后把
代入由分式方程转化得的整式方程求出
的值。
【答案与解析】
解:方程两边同乘约去分母,
得
整理得
∵ 原方程有增根,
∴ ,即
或
把代入
,解得
把代入
,解得
所以当或
时,方程会产生增根。
【总结升华】处理这类问题时,通常先将分式方程转化为整式方程,再将求出的增根代入整式方程,即可求解。
举一反三:
【变式】如果方程有增根,那么增根是________.
【答案】;
提示:因为增根是使分式的分母为零的根,由分母或
可得
。所以增根是
。
类型四、分式方程的应用
4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等。求甲、乙两班每小时各种多少棵树?
【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等。
【答案与解析】
解:设甲班每小时种棵树,则乙班每小时种
棵树。
由题意可得,解这个方程,得
经检验是原方程的根且符合题意。
所以 (棵)
答:甲班每小时种20棵树,乙班每小时种22棵树。
【总结升华】解此题的关键是设出未知数后,用含的分式表示甲、乙两班种树所用的时间。
【变式】两个工程队共同参与一个建筑工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?
【答案】
解:设乙队单独施工1个月能完成工程的,总工程量为1。
根据工程的实际进度,得
方程两边同时乘以,得
解这个方程得
检验:当时,
=6≠0,
所以是原分式方程的解。
由上可知,若乙队单独工作1个月可以完成全部任务,对比甲队1个月完成任务的,可知乙队施工速度快。
答:乙队施工速度快。
关注我们
博文教育你身边的教育专家!