实变函数与泛函分析课本pdf_【泛函基础 4.1】Hahn-Bannach 定理

本文详细介绍了泛函分析中的重要定理——Hahn-Banach 定理,包括其在实数和复数空间的应用,以及推论如有界泛函的保范延拓。此外,还探讨了Zorn引理、共轭算子、典范映射和自反空间的概念,展示了这些理论在赋范空间和Banach空间中的关键作用。
摘要由CSDN通过智能技术生成

下面开始的第四章将要讲述赋范空间和 Banach 空间(完备赋范空间)中的四大基本定理:Hahn-Banach 定理、一致有界性定理、开映射定理和闭图像定理,它们是整个泛函分析的基石。

参考资料

https://www.math.ksu.edu/~nagy/real-an/ap-e-h-b.pdf

一、Zorn 引理

【定义:半序】设 X 为非空集合,定义集合中元素的半序关系

,它需要满足
  1. 自反性:
  2. 对称性:
  3. 传递性:

【定义:半序集】称序对 (X,

) 为半序集。
  • 【注】半序集中可能存在两个元素,它们不能比较大小。

【定义:全序集】设序对 (X,

),若对于任意
,要么
,要么
,则称该序对为全序集。
  • 【注】全序集中任意两个元素之间都可以比较大小。

【定义:上界】若 X 为半序集,M 为 X 的非空子集,对于 X 中的元素 x,若对于任意

,都有
,则称 x 为 M 的上界。
  • 【注】上界的定义要求 x 能和 M 中的任意元素比较大小,并且更大。

【定义:极大元】若 X 为半序集,对于 X 中的元素 x,如果任取满足

,都有
,则称 x 为 X 的极大元。
  • 【注】并不要求极大元能够和 X 中的任意元素比较大小,但是要求如果能够比较大小,则它是最大的。

【引理:Zorn】设 X 为非空半序集,若 X 的任意非空全序子集均有上界,则 X 必有极大元。

【注】从条件上看,有限的全序子集有上界是比较显然的,但是可能存在元素无限的全序子集。从结果上看,半序集中并不是每个元素都能相互比较大小,有可能出现『环』的情形,Zorn 引理说明了在这样的半序集中不可能出现『环』。

二、Hahn-Banach 定理

【定义:次线性泛函】设 X 为线性空间,定义在 X 上的函数

满足

则称 p 为 X 上的次线性泛函。

【定义:半范数】设 X 为线性空间,X 上的函数

满足

则称 p 为 X 上的半范数。

【定理:实数空间上的一维 Hahn-Banach 定理】设 X 为实线性空间;p 为 X 上的次线性泛函;Y 为 X 的线性子空间,且

;f 为 Z 上的线性泛函,并且满足
。则存在 X 上的线性泛函 g,使得
  • 【证明】由于
    ,因此存在一个一维的延拓方向
    ,使得
    。由于 g 需要是线性的,因此有
    。 上述定义自然满足了线性泛函的条件和
    。因此证明的重点就是存在一个
    ,使得第二个要求被满足。利用线性和题设条件
    ,可以证明到第二个要求被自然满足。

【定理:实数空间上的 Hahn-Banach 定理】设 X 为实线性空间;p 为 X 上的次线性泛函;Y 为 X 的线性子空间;f 为 Y 上的线性泛函,并且满足

。则存在 X 上的线性泛函 g,使得
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值