matlab模拟ar(2)序列,基于MATLAB的ADSP AR(2)模型的LMS 与 RLS 算法分析

MATLAB 仿真实现LMS 和RLS 算法

题目:

序列x(n)有AR (2)模型产生:)()2()1()(21n w n x a n x a n x +-+-=,w(n)是均值为0、方差为1的高斯白噪声序列。.7.0,4.121-==a a 用LMS 算法和RLS 算法来估计模型参数21,a a 。

按照课本第三章63页的要求,仿真实现LMS 算法和RLS 算法,比较两种算法的权值收敛速度,并对比不同u 值对LMS 算法以及λ值对RLS 算法的影响。

解答:

1 数据模型

(1)高斯白噪声用用randn 函数产生均值为0、方差为1的标准正态分布随机矩阵来实现。随后的产生的信号用题目中的AR (2)模型产生,激励源是之前产生的高斯白噪声。

(2)信号点数这里取为2000,用2000个信号来估计滤波器系数。

(3)分别取3个不同的u 、λ值来分析对不同算法对收敛效果的影响。其中u=[0.001,0.003,0.006],lam=[1,0.98,0.94]。

2 算法模型

2.1自适应算法的基本原理

自适应算法的基本信号关系如下图所示:

Σ自适应算法

参数可调数字滤波器

x(n)

d(n)

y(n)e(n)

-+

图 1 自适应滤波器框图

输入信号x(n)通过参数可调的数字滤波器后产生输出信号y(n),将其与参考信号d(n)进行比较,形成误差信号e(n)。e(n)通过某种自适应算法对滤波器参数进行调整,最终是e(n)的均方值最小。当误差信号e(n)的均方误差达到最小的时候,可以证明信号y(n)是信号d(n)的最佳估计。 2.2 LMS 算法简介

LMS 算法采用平方误差最小的原则代替最小均方误差最小的原则,信号基本关系如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值