神经网络参数简介
在TensorFlow中,变量(tf.Variable)的作用就是保存和更新神经网络中的参数。和其他编程语言类似,在TensorFlow中的变量也需要初始值。因为在TensorFlow中参数赋予随机初始值最为常见,所以一边也使用随机数给TensorFlow中的便便初始化。下面一段代码给出了一种在TensorFlow中声名一个 2 * 3 的矩阵变量方法。
weights = tf.Variable(tf.random_normal([2, 3], stddev=2))
tf.random_normal([2, 3], stddev=2) 会产生一个 2 * 3的矩阵,矩阵的平均值为 0 ,标准差为2的随机数。tf.random_mormal 可以通过mean来指定平均值,这个值默认值为0,通过满足正太分布的随机数来初始化神经网络中的参数是一个非常好用方法,除了正太分布,TensorFlow还提供了其他的随机数生成器。见下表TensorFlow随机数生成函数
TensorFlow也支持通过常数来初始化一个变量。常数生成函数
向前传播算法代码示例
import tensorflow as tf
# 声名w1和w2 这里还通过seed参数设定了随机种子,这样可以保证每次运行结果是一样的(数值上随机不会和上图一样)
w1 = tf.Variable(tf.random_normal((2, 3), stddev=1, seed=1)) # 定义一个矩阵输入层到隐藏层第一层的权重,
w2 = tf.Variable(tf.random_no