上一节笔记传送门:数理统计|笔记整理(6)——常见分布族,估计量的进阶性质(2):UMVUE,UMRUE相关计算
下一节笔记传送门:数理统计|笔记整理(8)——估计量的高级性质:C-R不等式,Slutsky定理,渐近正态性初步
——————————————————————————————————————
大家好!
我们在4-6节中一直在关注参数估计中的无偏估计。在工程中,我们对于样本的统计参数做估计,也一般会先关注无偏性。那么在这一节中,我们要说一个对我自己来说都完全陌生的概念——同变估计。它是什么含义?又会导出什么有意思的内容?这是我们这一节的关注重点。
这一节完全是高等数理统计的内容,因此全文都会斜体,所以本科生如果不感兴趣,可以直接跳过这一节。
那么我们开始吧。
目录
- 引入
- 样本空间变换群与不变分布族
- 同变意义下的统计判决
- 平移变换群下位置参数的最优同变估计
- 平移变换群下的Pitman积分公式
- 相似变换群下尺度参数的最优同变估计
- 相似变换群下的Pitman积分公式
引入
第一个问题自然是,什么是同变估计?
Definition 1: Equivariant Estimator 在某种变换群下保持同变的估计。
你可能会缓缓地打出一个?,变换群是什么?它是抽代的一个概念,我们在之后再具体阐述。现在,我们先来直观的用例子,理解一下什么叫“同变”。
同变同变,顾名思义,“同时变化”,“同样的变化”。所以它的定义就是,在样本做了一个变换之后,对应的估计需要满足同样的变换。比方说针对一个位置参数的估计
所以在这一个意义下的得到的所有的估计就是同变估计,事实上是一种与无偏估计角度不太一样的另外一个估计参数空间。
我们根据书上的例子继续阐述这个概念的意义。如果你要求一个好的同变估计,那么它应该要是充分统计量的函数(第5节)。那么简单起见,我们考虑均方误差的损失函数,并且设样本满足
因为我们考虑均方误差,所以容易得到
(在这里我们要注意,我们考虑的
由于
样本空间变换群与不变分布族
有了这些例子,现在的问题就是定义变换群和对应的统计意义。
Definition 2: Transformation Group 若变换满足,则称它为变换群。若集合可测,则称它为可测变换群。
关于群的基本性质可以见下面这一节笔记,虽然这一节笔记是抽代的一个开头,但是够用了。
学弱猹:抽象代数|笔记整理(1)——群,子群,同态zhuanlan.zhihu.com下面我们给出导出群的概念。
Definition 3: Derived Group 给定分布族以及上的可测变换群,且假设一定可以导出,如果,且对任何的,均存在,使得,则称为关于群的不变分布族。故可以考虑定义一个一一变换使得,记,则称为群在参数空间上的导出群。
此时,可能你又缓缓地打出了一个?,该如何理解?首先,我们要注意的是,变换群是一种变换,比方说平移变换。所以
但是,自然也会有反例。如果我们考虑相似变换群
所以我们看到,所谓的变换群,其实就是一个描述一系列变换的集合。而变换的思想其实早就不会陌生。比方说,我们经常会提到的位置参数分布族,尺度参数分布族,它们就分别关于平移变换群和相似变换群为不变分布族。
好的,我们用两个引理巩固一下抽代的基本概念。
Lemma 1: 若为上的变换群,关于群为不变分布族,导出群为,那么有
首先我们注意到,对于一个随机变量
(最后是因为随机变量变了,所以参数空间要变)
至于第二个结论,直接由
就可以得到。在证明中,时刻需要注意的就是
Lemma 2:在上构成与同态的群。
(同态的概念也可以在上面笔记中找到)
要证明这个结论,很明显需要说明一些对应。也就是说,如果能够找到一个映射
这就足够证明结论了。
同变意义下的统计判决
我想你没有忘记我们第五节说的统计判决这个东西。我们给出判决的导出群的概念,再来说明同变意义下的统计判决有什么不一样。
Definition 3: Derived Group in Statistical Decision Function 设分布族关于可测变换群为不变分布族,为在参数空间上的导出群。对于给定判决空间,如果对任何的,都存在上的一一变换,且构成与同态的群,则称为在上的导出群,并且记
你可以看到,我们在之前定义了两个变换群
Definition 4: Equivariant Statistical Decision Function/Loss Function 若统计判决函数满足,则称为关于变换群的同变判决函数。若损失函数满足,则称它为关于变换群的同变损失函数。
我们还要注意的事情就是,统计判决是针对不同的统计推断问题设计的。也就是说参数估计和假设检验就对应有不同的统计判决函数。
我们还是考虑用那个
最后这个Lemma 3是我们考虑同变估计的依据,它的证明和我们的Lemma 1很相似。只要弄清楚随机变量与参数标记的对应关系即可。
Lemma 3:
根据
在同变性的意义下,我们自然也可以得到最优的一个估计。这样的估计就是最优同变估计(MREE)。
平移变换群下位置参数的最优同变估计
从这一部分开始,我们进入一些具体的求解。也就是说,设
根据我们上面的引入,下面我们就一步步的把需要的群,对应的风险函数和MREE的求解方法列出来。
首先,我们要给定随机变量(书上说的是样本空间)的变换群(也就是平移变换群),也就是
有了这些,要求MREE,我们还需要做一些准备。
Lemma 4: 设为的平移同变估计,那么为平移不变量,也即,或。
走定义即可。
Lemma 5:为平移不变量的充要条件为:存在使得,其中为不变量,且它的分布仅仅与标准分布有关,而与无关。
这个也很简单,就不多说了。
其实通过这个你可以看到,因为“不变量”的存在不会改变同变估计的“同变”含义,所以我们很容易证明的就是下面这个性质。
Proposition 1: 若是的某一个平移同变估计,那么任一平移同变估计都可以表示为
你可以看到,有了这个性质,我们只需要找到一个同变估计
对于损失函数,一个最为常用的就是均方损失函数。其它的损失函数对应的最优同变估计求解会复杂很多,也不是我们关注的重点。
Theorem 1: Pitman 给定一个的平移同变估计,那么它的最优同变估计可以表示为,注意表示对标准分布取期望(也就是假设内部的分布是经过了一次平移的,这个思想我们后面会多次强调)。
既然要求
(注意,因为
所以问题就落到了,如何求解
在这样的条件期望下,归根到底变成了优化
在实际的MREE求解中,我们的难点自然会在那个条件期望上。但也许你注意到了,
Proposition 2: Pitman估计无偏。
首先还是一样,我们列出计算过程,有
最后,由重期望公式即可得到式子为0。
Example 1: 设,求的最优同变估计。
解答之前有必要提一下,虽然根据我们的Pitman公式,我们要先找到一个同变估计。但是其实大部分时候都不需要这么做。比方说在这里,因为我们考虑的是平移变换,所以这个同变估计其实是很好找的,只需要它在平移变换下保持同变即可。但是,为了方便之后使用Pitman公式计算,我们往往需要完备充分统计量。因此很多时候,我们会先找完备充分统计量,再判断它是不是同变估计,再使用Pitman公式。
我们在第一节中简单提过带位置参数的分布。这里我们再说一下,在这里因为
有了这个结论,根据Basu定理加Pitman公式,我们可以得到
这是很好求的,因为
平移变换群下的Pitman积分公式
事实上,通过我们之前的公式,还可以作进一步的处理,使之有一个更好的表达式。
Proposition 3: 设,那么的平移最优同变估计可以表示为
它的证明非常依赖概率论的技巧。考虑到我们一直没有提起这些相关的部分,我们决定完整的把证明过程写一遍。
首先因为我们的公式是
在这个情况下,我们考虑直接积分,那么关键的问题也就是
显然,变换的Jacobi行列式为1,所以容易得到这个联合密度函数为
那么考虑令
好的,既然给出了公式,自然不能不用题目来补充。
Example 2: 设为独立同分布样本,且,求的最优同变估计。
趁着这个题,我们再强调一下所谓的
也就是说,如果
在这种情况下,我们再考虑Pitman公式,就可以得到
所以最终结果就是
相似变换群下尺度参数的最优同变估计
所谓的相似变换群,就是考虑这样的分布族
根据这个分布族,定义它的相似变换实际上也不困难。首先针对随机变量定义相似变换
基本的概念铺垫完之后,为了采用同样的方法,导出同样的思路求解最优同变估计MREE,我们自然也需要不变量等等概念。不过我们只是简单列一下结论,因为没有必要说明太多。
Proposition 4: 1.为相似不变量,也即2. 相似不变量的充要条件为,且此分布仅仅与(也就是相似标准分布)有关。3. 给定某一个相似同变估计,它的任何相似同变估计都可以表示为Proposition 5: 设,则是最小值点。
Proposition 5的证明方法,可以在证明Theorem 1的过程中找到,方法一模一样,这里也不用多说了。
Theorem 2: Pitman 2 设为的某一个相似同变估计,则均方损失下,最优同变估计为,其中表示对标准分布求期望。
证明方法类似,设最优同变估计为
利用Proposition 5容易得到最小值对应的
当然,这里说的是
针对相似变换族的问题,实际上解法和平移变换族一模一样。找到一个完备充分统计量,然后代入公式。我们用一个例子简单说一下。
Example 3: 设独立同分布,,求的最优同变估计。
首先,这是一个相似变换族,所以我们求它的最优同变估计MREE,就是考虑相似变换族下的。注意它的完备充分统计量为
你看,并不困难。
相似变换群下的Pitman积分公式
在相似变换群下,事实上也有相对应的Pitman积分公式,但是这里的情况稍微复杂一点。我们在平移变换群中可以看到,我们的
那么我们先来看看
那么类似的,可以得到
如果有了这个结果,那么下一步就是求解
如果说有
(这是因为对应的情况就是)
求导即可得到
通过同样的方法,可以证明,如果
我们用这个结论来证明下面这个Pitman积分公式,它也是我们之后计算的工具。
Proposition 6: 设服从尺度参数分布族,那么最优同变估计可以表示为(注意这个就是联合概率密度)
你可以对比一下Proposition 3,它们的思路几乎一模一样。首先找到一个同变估计,在平移变换群是
先考虑
同样的,我们可以得到
注意到每一个
因为我们的公式中,其实还隐含着一个部分就是
好的,我们用一个例子来结束这一节。
Example 4: 设独立同分布,,求最优同变估计。
因为我们的公式其实就是依赖一个联合概率密度对参数的积分,所以,先写出联合概率密度
记
注意使用伽马函数代入哦。
小结
在这一节,我们简单地把平移变换群和相似变换群下对应的同变估计介绍完整了。其实大家也可以看出来,当你理解了同变估计的含义,并且掌握了平移变换群的基本原理,那么相似变换群,包括我们这一节没有涉及到的线性变换群的内容,其实都是大同小异了。
在韦博成的P123-128有线性变换群的内容,但是它的理论类似,计算方法类似,所以我们就不再这里多说。不过这不代表线性变换群的部分不重要,因此我们后面的习题还是会涉及到(不过具体的计算公式和结论肯定会给出来)。
下一节,我们会关注数理统计中,与信息量密切相关的C-R不等式和渐近正态性的内容。
——————————————————————————————————————
本专栏为我的个人专栏,也是我学习笔记的主要生产地。任何笔记都具有著作权,不可随意转载和剽窃。
个人微信公众号:cha-diary,你可以通过它来获得最新文章更新的通知。
《一个大学生的日常笔记》专栏目录:笔记专栏|目录
《GetDataWet》专栏目录:GetDataWet|目录
想要更多方面的知识分享吗?可以关注专栏:一个大学生的日常笔记。你既可以在那里找到通俗易懂的数学,也可以找到一些杂谈和闲聊。也可以关注专栏:GetDataWet,看看在大数据的世界中,一个人的心路历程。我鼓励和我相似的同志们投稿于此,增加专栏的多元性,让更多相似的求知者受益~