查找子系统数据结构_KM教学法在“数据结构”课程中的研究与应用

本文探讨了KM教学法在“数据结构”课程中的应用,通过构建知识逻辑架构图和使用思维导图,帮助学生理解和掌握数据结构的知识点。实践表明,采用KM教学法能显著提高学生对知识点的掌握程度和考试成绩。
摘要由CSDN通过智能技术生成


KM教学法是由北京科技大学杨炳儒教授倡导提出的,是将“知识逻辑结构”与“思维导图”进行融合,以知识逻辑结构为核心,经宏观知识架构与微观演绎铺展,形成相互融合的教学方法和模式。“数据结构”课程的知识体系安排是在宏观上先进行“抽象数据类型”定义,然后在微观上进行具体操作“算法”的介绍。因此可以在该课程教学中引入KM教学法。

一、KM教学法简介

1.KM教学法的核心

    KM教学法的核心是将课程知识体系划分为宏观层面和微观层面。宏观层面主要是构建课程的整体知识逻辑架构图 (KLSG),用来描述各知识子系统之间的内在联系。其中知识子系统可以是某些内在联系紧密的章节,可以是某些重要的基础概念,还可以是相似性的证明和推理方法等。而微观层面主要是利用思维导图 (MM) 融入到概念图、推理、证明、问题求解等内部, 表征其具体、细致、动态、发展的逻辑构成与逻辑推演特征,揭示其形成概念证明与问题求解的思路,揭示其逐步精化的过程。以KLSG为主体贯穿、融入思维导图方法的这种综合集成、多层递阶知识系统的构造,是KM教学法的精髓与内核。

2.KM教学法的实现

    KM教学法归纳出来一套行之有效的方法,即教学过程可以描述为“抽点—连线—成网—扩展”的知识逻辑加工过程。

    抽点:主要是对理论体系实施逐节—逐单元—逐章—逐篇的、由个别到一般的剖析。通过剖析,将每一部分的概念、定理、法则、理论的知识要点抽出,暂时舍弃那些次要的、枝节性的东西。

    连线:在程序上,先分析局部再分析扩大片,最后分析总体。在内容上,要寻求两种“要素”:一是各概念、定理、法则、理论间的内在联系;二是贯穿于各部分概念、定理、法则、理论间称之为“知识链”的主线。

    成网:在知识间的内在联系不断丰富和理论逐步发展的基础上,由浅到深、由简单到复杂、由具体到抽象的沿多层次结构不断深化,一环套一环地发展着。同时,要注重知识在横纵方向上的联系,以形成“知识网络”。

    扩展:在先前形成的知识框架的基础上,沿着各个“脉络”去发展和延伸,将各相应部分加入全部细节,从而扩充与上升到知识的总体状态中去。这样掌握的知识是成串、成套的,是具有“空间”结构的,而不是“平面”结构的简单展现。从认识论的角度讲,此阶段的认知是螺旋式上升。

二、在“数据结构”课程中的应用

1.主要教学目标及内容

    “数据结构”课程的教学内容主要是讲述数据的逻辑模型、存储结构和对应的各种操作,以及各种经典的算法。教学目标是使学生在掌握各种抽象数据类型基础上,能够利用这些模型或者是模型的变化形式解决计算机中的核心数据结构问题。在实际教学中,通过引入KM教学法,力求强化学生的主体认知过程,即先从总体上引入课程的知识逻辑架构,将各部分知识进行有机的整合;在每一个章节也遵循“抽点—连线—成网”的原则,而在具体知识点上则借助思维导图来讲解。

2.逻辑架构图

    在KM教学法的指导下, “数据结构 ”整体知识逻辑架构图如图1所示。

1ac6c85326aea56fa1125e3ba6a733b5.png

    该知识逻辑架构图将课程内容划分为线性结构和非线性结构两大部分,每部分知识的组织都可以归结为:逻辑定义、物理表示以及算法和操作。其中线性结构主要包括线性表、栈、队列、数组和串等章节,非线性结构下主要是树和图。在知识的逻辑内在联系上,非线性结构是定义与实现都依赖于线性结构,各种查找和排序的算法也分别建立在线性结构和非线性结构基础上,从而导致其时间复杂度和空间存在差异。

    学生学习该课程时一个很大的问题就是觉得知识点之间缺少联系,非常零散。通过该图就能较好地体现知识的整体性,将知识“由厚变薄”。

3.思维导图

    线性表是最基本的同时也是最重要的数据结构之一,在链式存储下线性链表的操作和实现是其中比较重要的内容。线性表从不同角度可分为带头结点的和不带头结点的、单向和双向的、循环和普通的,以及在此基础上扩展出来的其他特殊形式。以清华大学出版社出版的 《数据结构 (C语言版) 》为例,讲述该知识点的相关操作和实现就有10种之多,学生往往很难理顺其中的思路,为此设计了线性链表思维导图,如2所示。

e47e74ab1d36a2e18580424fe95a469c.png

    教学中首先介绍链式存储下的操作种类,即以无头结点链表为基准,分别介绍了单向链表、双向链表、单向循环链表以及双向循环链表下的操作实现过程,然后扩展到特殊的链表,例如带尾指针的单向链表、带计数器的循环双链表等。当链表从无头结点变成了有头结点的时候,最重要的是引导学生理顺操作实现过程中的区别与联系,而不是机械记忆。链表的思维导图从最简单的无头结点单向链表操作入手,逐步扩展到双向、循环等特殊链表形式,符合学生由简入繁的思维习惯,也为后续树和图链式表示奠定基础。

三、效果对比

    为了验证引入KM教学的效果, 通过问卷调查,从横向和纵向上做了效果比对。横向上选择了同一学期不同的4个班级,纵向上选择了同一个教师不同的时间所带的4个班级,一位教师以常规的方式教学,另一位则引入KM教学法,分别从知识点的掌握和最终考试成绩两个方面的情况进行调查分析,结果如图3所示。

5aebf20064280cd0cda61381e0e293cd.png

    上述曲线可以看出,随着教学的推进,引入KM教学法的班级对数据结构的理解得到了逐步提升。而在不同的节点上,教改班级大部分学生对知识点的理解程度都优于一般班级,到学期末时,二者之差比例近20%。而从考试平均分和90分以上人数比例数据显示,教改班平均分明显高于非教改班约5分;而教改班高分人数比例也明显优于非教改班。几项数据充分说明,教学中引入KM教学法取得了较好的效果。

    KM教学法按照知识延伸和发展的内在逻辑性,确立以讲授知识的逻辑结构、理论框架和内在联系为主,对思维活动加以诱导,坚持“先搭架,后填充,再诱导”和少而精的原则,进行知识的组织和教学,是一种非常值得大力推广的教学方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值