c语言 函数轨迹,轨迹方程

轨迹方程是几何轨迹的代数表示,描述了动点满足特定条件形成的图形。本文介绍了轨迹方程的概念、求解方法,包括直译法、定义法、相关点法、参数法和交轨法,并通过多个例题详细阐述了各种方法的运用,如动点在双曲线、椭圆、直线和抛物线上的轨迹方程求解。
摘要由CSDN通过智能技术生成

轨迹方程就是与几何轨迹对应的代数描述。

中文名

轨迹方程概    括

几何轨迹对应的代数描述及求法

轨迹方程定义

编辑

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

115a2a2c4c3f5faae54f91a9ed1c8534.png平面轨迹一般是曲线,空间轨迹一般是曲面。【例如】A,B是两个定点,k(>0)是一个常数,满足MA:MB=k的动点M的轨迹:

在平面上表示一条直线(k=1)或一个圆周(k≠1);

在空间内表示一条平面(k=1)或一个球面(k≠1)。

【轨迹方程】就是与几何轨迹对应的代数描述。

轨迹方程解法

编辑

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验.

二、求动点的轨迹方程的常用方法:

求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等.

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法.

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法.

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法.

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法.

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法.

*直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

轨迹方程典型例题

编辑

典型例题

例1、已知Q点是双曲线上异于二顶点的一动点,F1、F2是双曲线的左、右焦点,从F2点向∠F1QF2的平分线作垂线F2P,垂足为P点,求P点的轨迹方程.

分析:注意图形的几何性质,联想到双曲线的定义,可考虑用定义法求轨迹方程.

解答:如图,连结OP,则由角平分线的性质,

得|AQ|=|F2Q|.

由三角形中位线性质,得.

.

(若点Q在双曲线的左支上时,应为).

即.∴P点轨迹方程即为.

例2、设动圆C的对称轴平行于坐标轴,长轴长为4,且以y轴为左准线,左顶点A在抛物线y2=x-1上移动,求这些椭圆的中心C的轨迹方程.

分析:A点和C点是一对相关点,设法将A点的坐标用C点坐标表达,用相关点法求C的轨迹方程.

解答:设中心C的坐标(x,y),则A的坐标为(x-2,y),又A在抛物线y2=x-1上移动.

∴y2=(x-2)-1,即y2=x-3,此即所求C的轨迹方程.

另外,问题也可用参数法求解.

∵左顶点A在抛物线y2=x-1上移动,

∴设A(t2+1,t)(t为参数).

∵y=yA=t,①

∵2a=4,∴a=2,∴x=xA+2=t2+3. ②

由①、②消去参数t,得中心C的轨迹方程是y2=x-3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值