双级减速器优化matlab,基于matlab的二级齿轮减速器的优化设计.doc

41528d3028836879cd698677c3999917.gif基于matlab的二级齿轮减速器的优化设计.doc

基于MATLAB的二级齿轮减速器的优化设计黄洪200921030302机制0903佘意200921030202机制0902长沙理工大学1引言齿轮减速器是原动机和工作机之间独立的闭式机械传动装置,能够降低转速和增大扭矩,是一种被广泛应用在工矿企业及运输、建筑等部门中的机械部件。在计算齿轮减速器中心距时,采用普通的计算方法,得到的中心距明显偏大,减速器不够紧凑,因而在这里我们采用MATLAB优化方法进行优化,并和我们原有的数据进行比较,验证优化的结果。2数学模型的建立二级圆柱齿轮减速器,要求在保证承载能力的条件下按照总中心距最小进行优化设计。在设计中,我们选取了第四组数据,即已知高速轴输入功率R4KW,高速轴转速N960R/MIN,总传动比I315,齿轮的齿宽系数Φ0.4;大齿轮45号钢,正火处理,小齿轮45号钢,调质处理,总工作时间不少于5年。21选取设计变量减速器的中心距式为式中、为高速级与低速级齿轮的法面模数,、高速级与低速级传动比,1NM21I2、高速级与低速级的齿数比;小齿轮齿数齿轮的螺旋角。1Z3计算中心距的独立参数有、、(315/)、、、1N2M1I21IZ3故优化设计变量取1231,,TNXZI123456,,TXX22建立目标函数将中心距公式用设计变量表示,确定目标函数为135456/COSFXXX根据传递功率与转速分析,综合考虑传动平稳、轴向力不可太大,能满足短期过载,高速级与低速级的大齿轮浸油深度大致相近,齿轮的分度圆尺寸不能太小等因素,各变量的上下限取如下边界。12125,6,42,NNMZ3162,587,15OOZI23确定约束条件231线性不等式约束条件1120GXX23245367489510621020XGXXGXX232非线性不等式约束条件1由齿面接触强度公式确定的约束条件是3195IHHIKTAB得到高速级和低速级齿面接触强度条件分别为2331COS0895HNAMZIKT2332NAI式中为许用接触应力,单位为N/;、为高速轴I和中间轴Ⅱ的转矩,单HM1T2位为N/MM;、为高速级和低速级载荷系数。1K22由齿轮弯曲强度公式确定的约束条件11125FFNKTBDMY1222FF得到高速级和低速级大小齿轮的弯曲强度条件分别为321121COS03FANYIMZKT和3232423COS01FANYIMZKT式中、、、为齿轮L、2、3、4的许用弯曲应力,单位为N/1F23F4;、、、为齿轮1、2、3、4的齿形系数。2MY34对于大小齿轮的齿形系数,可查阅相关机械手册,在这里我们得到齿形系数分别为对于小齿轮,其齿形系数、按下式计算1Y32113330690854YZZ对于小齿轮,其齿形系数、按下式计算2Y4224440169085YZZ3由高速级大齿轮和低速轴不发生干涉的约束条件22/0EAED23111COSNNMZIMZI式中E为低速轴轴线与高速级大齿轮齿顶圆之间的距离;为高速级大齿轮的齿顶圆直2E径。对于以上的约束条件,代入已知的数据,可以得到如下结果1324215187/,5/6/,4690,40/HFFNNMTMTIM1234,008,25,,5KYYE可得363136154452231565142654217161255COS0790CS0O0GXXXXXGXXX综上,我们得到了至17个约束条件。1GX173进行MATLAB优化31编写目标函数M文件并以文件名MYFUN保存在MATLAB目录下的WORK文件夹中。FUNCTIONFMYFUNXFX1X31X5X4X41315/X5/2COSX632编写约束函数M文件并以文件名MYCON保存MATLAB目录下的WORK文件夹中。FUNCTIONC,CEQMYCONXC1COSX633079106X13X33X5C2X53COSX631701104X23X43C3COSX6299391051X5X13X33C4X52COSX621706104315X5X23X42C5X52X150COSX62X1X2X5X2X4315X533在命令窗口调用优化程序X03,5,19,17,63,11LB2,2,14,16,58,8UB5,6,22,22,7,15X,FVAL,EXITFLAG,OUTPUTFMINCONMYFUN,X0,,,,,LB,UB,MYCON得到的优化结果如下X1,X2,X3,X4,X5,X62,4,19,16,58,98F3404优化结果的分析比较项目1NM2N1I1Z3Z中心距常规2541851965112460优化2419165898340由列表可以看出,得到的优化结果要明显好于常规解法,使的结构更加紧凑。

针对掘进机行星轮系减速器优化设计Matlab的遗传算法是一种非常有效的全局优化工具,可以在保证设计性能的前提下,有效减小减速器的体积。为了实现这一目标,可以参考《Matlab遗传算法优化掘进机行星轮系减速器设计》这一研究文档。文档详细介绍了如何通过Matlab的遗传算法对减速器的结构参数进行优化,以下是一个简化的操作指南: 参考资源链接:[Matlab遗传算法优化掘进机行星轮系减速器设计](https://wenku.csdn.net/doc/m2ynwx6t4s?spm=1055.2569.3001.10343) 首先,需要建立减速器的数学模型,包括力学模型、几何模型和传动比等参数。这个模型需要准确反映减速器的工作原理和性能要求。然后,利用Matlab软件中的遗传算法工具(如GA Toolbox),设置优化参数和约束条件,如齿轮的模数、齿数、齿宽等,确保设计变量在物理可行的范围内。 在Matlab中,可以通过编写适应度函数来评估每一组设计变量的性能。适应度函数将评估减速器的体积大小,同时确保传动比和强度等关键性能指标符合设计要求。通过遗传算法,系统将自动选择适应度高的参数组合进行迭代,通过交叉、变异等操作生成新的设计方案。 例如,可以设定一个优化目标,要求在保持减速器传动比不变的情况下,使减速器的体积最小化。具体的优化流程如下: 1. 初始化遗传算法参数,包括种群大小、交叉概率、变异概率等。 2. 随机生成一个初始种群,每个个体代表一组可能的设计参数。 3. 计算每个个体的适应度,即根据设计参数计算出的减速器体积。 4. 根据适应度值选择优良的个体作为下一代的“父母”。 5. 通过交叉和变异操作生成新的种群。 6. 重复步骤3至5,直到满足终止条件,如达到预定的迭代次数或体积最小化到一定程度。 通过这一过程,可以找到一组优化的设计参数,实现减速器体积的显著减小。实例分析表明,使用遗传算法优化后的减速器设计,能够有效减少材料使用,提高掘进机的工作效率,同时缩短设计周期。 对于想要深入了解和实践Matlab遗传算法在掘进机行星轮系减速器设计中的应用,除了参考上述研究文档外,还可以查阅相关的教科书和专业文献,以获得更全面的知识支持。 参考资源链接:[Matlab遗传算法优化掘进机行星轮系减速器设计](https://wenku.csdn.net/doc/m2ynwx6t4s?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值