java要分词用什么词库_GitHub - zhujiayus/segment: The jieba-analysis tool for java.(基于结巴分词词库实现的更加灵活优雅易用,高性能的 ...

Segment是一个基于jieba分词库的Java实现,提供更灵活的配置和高性能。它支持多种分词模式、格式处理,包括全角半角、英文大小写、中文繁简体,并允许自定义词库,适用于NLP相关工作。
摘要由CSDN通过智能技术生成

Segment

Segment 是基于结巴分词词库实现的更加灵活,高性能的 java 分词实现。

愿景:成为 java 最好用的分词工具。

68747470733a2f2f7472617669732d63692e636f6d2f686f7562622f7365676d656e742e7376673f6272616e63683d6d6173746572

68747470733a2f2f6d6176656e2d6261646765732e6865726f6b756170702e636f6d2f6d6176656e2d63656e7472616c2f636f6d2e6769746875622e686f7562622f7365676d656e742f62616467652e737667

68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d417061636865322d4646303038302e737667

68747470733a2f2f6261646765732e66726170736f66742e636f6d2f6f732f76322f6f70656e2d736f757263652e7376673f763d313033

创作目的

分词是做 NLP 相关工作,非常基础的一项功能。

jieba-analysis 作为一款非常受欢迎的分词实现,个人实现的 opencc4j 之前一直使用其作为分词。

但是随着对分词的了解,发现结巴分词对于一些配置上不够灵活。

(1)有很多功能无法指定关闭,比如 HMM 对于繁简体转换是无用的,因为繁体词是固定的,不需要预测。

(2)最新版本的词性等功能好像也被移除了,但是这些都是个人非常需要的。

(3)对于中文繁体分词支持不友好。

所以自己重新实现了一遍,希望实现一套更加灵活,更多特性的分词框架。

而且 jieba-analysis 的更新似乎停滞了,个人的实现方式差异较大,所以建立了全新的项目。

Features 特点

面向用户的极简静态 api 设计

面向开发者 fluent-api 设计,让配置更加优雅灵活

详细的中文代码注释,便于源码阅读

基于 DFA 实现的高性能分词

基于 HMM 的新词预测

支持不同的分词模式

支持全角半角/英文大小写/中文繁简体格式处理

允许用户自定义词库

简单的词性标注实现

v-0.1.8 最新变更

分词词组词库独立

快速入门

准备

jdk1.7+

maven 3.x+

maven 引入

com.github.houbb

segment

0.1.8

默认分词示例

返回分词,下标等信息。

final String string = "这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱学习。";

List resultList = SegmentHelper.segment(string);

Assert.assertEquals("[这是[0,2), 一个[2,4), 伸手不见五指[4,10), 的[10,11), 黑夜[11,13), 。[13,14), 我[14,15), 叫[15,16), 孙悟空[16,19), ,[19,20), 我爱[20,22), 北京[22,24), ,[24,25), 我爱[25,27), 学习[27,29), 。[29,30)]", resultList.toString());

指定返回形式

有时候我们根据自己的应用场景,需要选择不同的返回形式。

SegmentResultHandlers 用来指定对于分词结果的处理实现,便于保证 api 的统一性。

方法

实现

说明

common()

SegmentResultHandler

默认实现,返回 ISegmentResult 列表

word()

SegmentResultWordHandler

只返回分词字符串列表

默认模式

默认分词形式,等价于下面的写法

List resultList = SegmentHelper.segment(string, SegmentResultHandlers.common());

只获取分词信息

final String string = "这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱学习。";

List resultList = SegmentHelper.segment(string, SegmentResultHandlers.word());

Assert.assertEquals("[这是, 一个, 伸手不见五指, 的, 黑夜, 。, 我, 叫, 孙悟空, ,, 我爱, 北京, ,, 我爱, 学习, 。]", resultList.toString());

分词模式

分词模式简介

分词模式可以通过类 SegmentModes 工具类获取。

序号

方法

准确度

性能

备注

1

search()

一般

结巴分词的默认模式

2

dict()

较高

一般

和 search 模式类似,但是缺少 HMM 新词预测

3

index()

一般

尽可能多的返回词组信息,提高召回率

4

greedyLength()

一般

贪心最大长度匹配,对准确度要求不高时可采用。

使用方式

针对灵活的配置,引入了 SegmentBs 作为引导类,解决工具类方法配置参数过多的问题。

search 模式

segmentMode() 指定分词模式,不指定时默认就是 SegmentModes.search()。

final String string = "这是一个伸手不见五指的黑夜。";

List resultList = SegmentBs.newInstance()

.segmentMode(SegmentModes.search())

.segment(string);

Assert.assertEquals("[这是[0,2), 一个[2,4), 伸手不见五指[4,10), 的[10,11), 黑夜[11,13), 。[13,14)]", resultList.toString());

dict 模式

只依赖词库实现分词,没有 HMM 新词预测功能。

final String string = "这是一个伸手不见五指的黑夜。";

List resultList = SegmentBs.newInstance()

.segmentMode(SegmentModes.dict())

.segment(string);

Assert.assertEquals("[这[0,1), 是[1,2), 一个[2,4), 伸手不见五指[4,10), 的[10,11), 黑夜[11,13), 。[13,14)]", resultList.toString());

index 模式

这里主要的区别就是会返回 伸手、伸手不见 等其他词组。

final String string = "这是一个伸手不见五指的黑夜。";

List resultList = SegmentBs.newInstance()

.segmentMode(SegmentModes.index())

.segment(string);

Assert.assertEquals("[这[0,1), 是[1,2), 一个[2,4), 伸手[4,6), 伸手不见[4,8), 伸手不见五指[4,10), 的[10,11), 黑夜[11,13), 。[13,14)]", resultList.toString());

GreedyLength 模式

这里使用贪心算法实现,准确率一般,性能较好。

final String string = "这是一个伸手不见五指的黑夜。";

List resultList = SegmentBs.newInstance()

.segmentMode(SegmentModes.greedyLength())

.segment(string);

Assert.assertEquals("[这[0,1), 是[1,2), 一个[2,4), 伸手不见五指[4,10), 的[10,11), 黑夜[11,13), 。[13,14)]", resultList.toString());

格式化处理

格式化接口

可以通过 SegmentFormats 工具类获取对应的格式化实现,在分词时指定即可。

序号

方法

名称

说明

1

defaults()

默认格式化

等价于小写+半角处理。

2

lowerCase()

字符小写格式化

英文字符处理时统一转换为小写

3

halfWidth()

字符半角格式化

英文字符处理时统一转换为半角

4

chineseSimple()

中文简体格式化

用于支持繁体中文分词

5

none()

无格式化

无任何格式化处理

6

chains(formats)

格式化责任链

你可以针对上述的格式化自由组合,同时允许自定义格式化。

默认格式化

全角半角+英文大小写格式化处理,默认开启。

这里的 Q 为全角大写,默认会被转换处理。

String text = "阿Q精神";

List segmentResults = SegmentHelper.segment(text);

Assert.assertEquals("[阿Q[0,2), 精神[2,4)]", segmentResults.toString());

中文繁体分词

无论是结巴分词还是当前框架,默认对繁体中文的分词都不友好。

默认分词示例

显然和简体中文的分词形式不同。

String text = "這是一個伸手不見五指的黑夜";

List defaultWords = SegmentBs.newInstance()

.segment(text, SegmentResultHandlers.word());

Assert.assertEquals("[這是, 一, 個, 伸手, 不見, 五指, 的, 黑夜]", defaultWords.toString());

启用中文繁体分词

指定分词中文格式化,可以得到符合我们预期的分词。

String text = "這是一個伸手不見五指的黑夜";

List defaultWords = SegmentBs.newInstance()

.segmentFormat(SegmentFormats.chineseSimple())

.segment(text, SegmentResultHandlers.word());

Assert.assertEquals("[這是, 一個, 伸手不見五指, 的, 黑夜]", defaultWords.toString());

格式化责任链

格式化的形式可以有很多,我们可以根据自己的需求自由组合。

比如我们想同时启用默认格式化+中文简体格式化。

final String text = "阿Q,這是一個伸手不見五指的黑夜";

List defaultWords = SegmentBs.newInstance()

.segmentFormat(SegmentFormats.chains(SegmentFormats.defaults(),

SegmentFormats.chineseSimple()))

.segment(text, SegmentResultHandlers.word());

Assert.assertEquals("[阿Q, ,, 這是, 一個, 伸手不見五指, 的, 黑夜]", defaultWords.toString());

词性标注

说明

目前支持最简单版本的词性标注,暂定为 alpha 版本,后续引入基于 HMM 实现的词性标注。

使用例子

final String string = "这是一个伸手不见五指的黑夜。";

List resultList = SegmentBs.newInstance()

.posTagging(SegmentPosTaggings.simple())

.segment(string);

Assert.assertEquals("[这是[0,2)/un, 一个[2,4)/mq, 伸手不见五指[4,10)/i, 的[10,11)/ude1, 黑夜[11,13)/n, 。[13,14)/w]", resultList.toString());

Benchmark 性能对比

性能对比

性能对比基于 jieba 1.0.2 版本,测试条件保持一致,保证二者都做好预热,然后统一处理。

验证下来,默认模式性能略优于 jieba 分词,贪心模式是其性能 3 倍左右。

备注:

(1)默认模式和结巴 Search 模式一致。

后期考虑 HMM 也可以配置是否开启,暂定为默认开启

(2)后期将引入多线程提升性能。

性能对比图

相同长文本,循环 1W 次耗时。(Less is Better)

benchmark.png

后期 Road-Map

核心特性

HMM 词性标注

HMM 实体标注

CRF 算法实现

N 元组算法实现

优化

多线程的支持,性能优化

双数组 DFA 实现,降低内存消耗

创作感谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值