梵语和藏语_【语言学】梵语与藏语的比较小论

本文介绍了梵语和藏语的语法特点。梵语有复杂动词系统和丰富名词词尾变化,构成要素有“格”“性”“数”等;藏语受梵文拼写影响,动词形态复杂,通过“格助词”表现“格”。藏语与梵语语法对应关系强,在佛教文献学研究中藏语译本地位重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

讲师:白景皓(讲解)

1.梵语

梵语是印欧语系的印度-伊朗语族的印度-雅利安语支的一种语言,是印欧语系最古老的语言之一。和拉丁语一样,梵语已经成为一种属于学术和宗教的专门用语。梵语文法的主要特征是复杂的动词系统,丰富的名词词尾变化,和广泛使用了合成名词。梵语文法由梵语文法家在两千年多来研习和编撰著。

简单来说,构成梵语的主要要素是“格”(Case),“性”(Gender),“数”(Number),“时态”(Tense),“语态”(Voice),“复合语”(Compound)。具体例如下表所示:

其中“格”有七个(呼格并入主格中),即上表所示,“性”有三个,“数”也有三个。即使是同一个词,由于表示的事项不同,发生的变化也不同。比如说:“提婆达多做饭”是“Devadatta pacati |”,而“我为提婆达多做饭”则成了“Devadattāya pacāmi |”,在中文中同样是“提婆达多”,而梵语中则根据语法位置,词语也发生了变化,这是梵语最大的特点。

2.藏语

学界一般认为藏语是吐蕃时代公元7世纪由国王松赞干布的重臣吞弥·桑布扎创制的。受梵文拼写影响。苯教学者则认为藏文完全是从象雄文演变而来。藏文字母有上加字、下加字等垂直拼写法。

标准藏语是属于作-通格语言的语言类型。名词一般都是没有显示其语法数量,不过都显示出格位。形容词从来没有标示出且跟随在名词之后。指示代词也跟随在名词之后,但被标示出语法数量来。动词在藏语法形态而言可能最复杂的部分。有三个时态(过去,现在,未来)及语态,

藏语也有七个“格”,但它是通过“格助词”表现出来的,这一点就大大减少了与梵语之间的“鸿沟”。

藏语“格助词”如下所示:

主格(能格):gis/gyis/kyis/yis/无

宾格:无

具格:gis/gyis/kyis/yis/-s

与格:-r/la/

离格:nas/las

属格:gi/gyi/kyi/yi/‘i

位格:-r/la/du/su/na/ru/tu

3.藏语与梵语的对应

从文献学角度来讲,藏语与梵语有着相似的语法特性,所以用藏语翻译的梵语,藏语字母与梵语字母有完全的对应关系。从梵语翻译的内容,不论词意,藏语是唯一可以还原梵语的语言。

所以在佛教文献学研究中,藏语译本有着举足轻重的地位,比如说:『般若心经』中汉文翻译为“行深般若波罗蜜多时”一文。

藏语是:she rab kyi pha rol tu phyin pa zab mo spyod pa nyid la

梵语是:gaṁbhīrāyāṁ prajñāpāramitāyaṁ caryāṁ caramāṇo

对于一般的佛教初学者来说,汉文这一句可能会被读成“甚深地实践般若波罗蜜多的时候”,因为在汉文语感中容易将“深”当作副词而修饰动词“行”。然而,首先参照一下梵语:gaṁbhīrāyāṁ(位格.单数.阴性.绝对分词) prajñāpāramitāyaṁ(位格.单数.阴性.绝对分词) caryāṁ(宾格.单数.阴性) caramāṇo(动词语根car的现在分词构文,表示时间状语),所以应该翻译成:修行甚深的般若波罗蜜多的时候。

再看一下藏语的译文:she rab kyi(属格) pha rol tu phyin pa(宾格) zab mo(定语在后修饰中心词) spyod pa nyid(动词spyod的分词化) la(位格,时间状语),所以应该翻译成:修行甚深的般若的波罗蜜多的时候。

如上所示,比对一番可知,(一)梵语与藏语的语法对应关系强于汉文与梵语之间的关系;(二)藏语翻译有直译的习惯,而汉文为求文雅易懂,往往采取意译,这就造成了与梵文写本的理解偏差。

资源下载链接为: https://pan.xunlei.com/s/VOYaEvb5YbXDcdRVMg3ANOaDA1?pwd=sjwe data.py 用于创建数据集。 makelabel.py 的功能是融合数字背景并保存。其中,一张背景图会在四个象限随机添加一个数字,且几乎无重叠。标签形状为(32,32,11),32×32 是热图输出大小,每个热图像素对应原图 4×4 的方格,每个方格作为分类器,可分出 11 类,0-9 对应数字,10 代表背景。fusion_img 函数将一个数字融合到背景图的随机位置;fusion_4img 函数考虑到单个数字太少,可处理四个数字,输入参数为(背景,(图片 1,标签 1),(图片 2,标签 2)...),输出为图片(0-255)标签。 model.py 是模型文件,最终占用 192kb 内存。 test.py 为测试脚本,包含两个定义的函数,加载模型后可进行单张测试视频测试,使用时注释另一个即可。onepoint 函数输入矩阵点的 xy 坐标,逐行扫描该点周围 6 行的像素,若为 1(表示有物体),就将对应方格的 xy 加入数组并置零。扫描完周围 6 行后,若总点数超过 10 个,判定为一个物体,对所有 xy 分别求平均,得到物体中心。 单张图片后处理过程:获取输出的 32×32×11 矩阵,先扫描 32×32 区域,对每行取 argmax,若不属于背景类,说明可能存在物体,再设阈值过滤部分误识别框,然后将该点值置为 1 作为标记。 再次扫描矩阵时,为避免越界,从第 6 行开始到 25 行结束。若扫描到 1,如(20,20,3)这一格为 1,就取矩阵对应 3 的那一层(32×32 大小),将该矩阵(20,20)坐标传入 onepoint 函数,返回中心,类别为 3。一般不会误判,若一个数字有两种可能且两种像素数都超 10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值