想求解含有未知数x2 x3 x4 x6 l5 l6的矩阵方程,代码如下:
syms x2 x3 x4 x6 l5 l6
a=[cosd(-90) sind(-90) 0 -100;-sind(-90)*cosd(90) cosd(-90)*sind(90) sind(90) -60*sind(90);sind(-90)*sind(90) -cosd(-90)*sind(90) cosd(90) -60*cosd(90);0 0 0 1]
b=[cos(x2) sin(x2) 0 -70;-sin(x2)*cosd(-120) cos(x2)*sind(-120) sind(-120) 40*sind(-120);sin(x2)*sind(-120) -cos(x2)*sind(-120) cosd(-120) 40*cosd(-120);0 0 0 1]
c=[cos(x3) sin(x3) 0 60;-sin(x3)*cosd(90) cos(x3)*sind(90) sind(90) -140*sind(90);sin(x3)*sind(90) -cos(x3)*sind(90) cosd(90) -140*cosd(90);0 0 0 1]
d=[cos(x4) sin(x4) 0 -50;-sin(x4)*cosd(-90) cos(x4)*sind(-90) sind(-90) -15*sind(-90);sin(x4)*sind(-90) -cos(x4)*sind(-90) cosd(-90) -15*cosd(-90);0 0 0 1]
e=[cosd(30) sind(30) 0 -110;-sind(30)*cosd(145) cosd(30)*sind(145) sind(145) -l5*sin(145);sind(30)*sind(145) -cosd(30)*sind(145) cosd(145) -l5*cosd(145);0 0 0 1]
f=[cos(x6) sin