python+cx_oracle+none,Python cx_Oracle 操作Oracle 数据库

Developer: Open Source

Mastering Oracle+Python, Part 1: Querying Best Practices

by Przemyslaw Piotrowski

As a first step, get familiar with the basic concepts of Oracle-Python connectivity

Published September 2007

Among

the core principles of Python's way of doing things there is a rule

about having high-level interfaces to APIs. The Database API (in this

case the Oracle API) is one example. Using the cx_Oracle Python module

from Computronix, you can take command over the Oracle query model

while maintaining compatibility with Python Database API Specification

v2.0.

The model of querying databases using DB API 2.0 remains

consistent for all client libraries conforming to the specification. On

top of this, Anthony Tuininga, the principal developer of cx_Oracle,

has added a wide set of properties and methods that expose

Oracle-specific features to developers. It is absolutely possible to

use only the standard methods and forget about the "extra" ones, but in

this installment you won't be doing that. The concept of universal

database wrappers might work in some cases but at the same time, you

lose all the optimizations that the RDBMS offers.

Introducing DB API 2.0 and cx_Oracle

The

Python Database API Specification v2.0 is a community effort to unify

the model of accessing different database systems. Having a relatively

small set of methods and properties, it is easy to learn and remains

consistent when switching database vendors. It doesn't map database

objects to Python structures in any way. Users are still required to

write SQL by hand. After changing to another database, this SQL would

probably need to be rewritten. Nevertheless it solves Python-database

connectivity issues in an elegant and clean manner.

The specification defines parts of the API such as the

module interface, connection objects, cursor objects, type objects and

constructors, optional extensions to the DB API and optional error

handling mechanisms.

The gateway between the database and

Python language is the Connection object. It contains all the

ingredients for cooking database-driven applications, not only adhering

to the DB API 2.0 but being a superset of the specification methods and

attributes. In multi-threaded programs, modules as well as connections

can be shared across threads; sharing cursors is not supported. This

limitation is usually acceptable because shareable cursors can carry

the risk of deadlocks.

Python makes extensive use of the exception

model and the DB API defines several standard exceptions that could be

very helpful in debugging problems in the application. Below are the

standard exceptions with a short description of the types of causes:

Warning—Data was truncated during inserts, etc.

Error—Base class for all of the exceptions mentioned here except for Warning

InterfaceError—The database interface failed rather than the database itself (a cx_Oracle problem in this case)

DatabaseError—Strictly a database problem

DataError—Problems with the result data: division by zero, value out of range, etc.

OperationalError—Database error independent of the programmer: connection loss, memory allocation error, transaction processing error, etc.

IntegrityError—Database relational integrity has been affected, e.g. foreign key constraint fails

InternalError—Database has run into an internal error, e.g. invalid cursor, transaction out of synchronization

ProgrammingError—Table not found, syntax error in SQL statement, wrong number of parameters specified etc.

NotSupportedError—A non-existent part of API has been called

The connect process begins with the Connection object, which is the

base for creating Cursor objects. Beside cursor operations, the

Connection object also manages transactions with the commit() and

rollback() methods. The process of executing SQL queries, issuing

DML/DCL statements and fetching results are all controlled by cursors.

cx_Oracle extends the standard DB API 2.0 specification in its

implementation of the Cursor and Connection classes at most. All such

extensions will be clearly marked in the text if needed.

Getting Started

Before working with queries and cursors, a connection to the

database needs to be established. The credentials and data source names

can be supplied in one of several ways, with similar results. In the

extract from the Python interactive session below, connection objects

db, db1 and db2 are all equivalent. The makedsn() function creates a

TNS entry based on the given parameter values. Here it is being

assigned to the variable dsn_tns. When environment settings are

properly set then you can use the shorter form

cx_Oracle.connect('hr/hrpwd'), skipping even the Easy Connect string

used for db and db1. >>> import cx_Oracle

>>> db = cx_Oracle.connect('hr', 'hrpwd', 'localhost:1521/XE')

>>> db1 = cx_Oracle.connect('hr/hrpwd@localhost:1521/XE')

>>> dsn_tns = cx_Oracle.makedsn('localhost', 1521, 'XE')

>>> print dsn_tns

(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(PORT=1521)))

(CONNECT_DATA=(SID=XE)))

>>> db2 = cx_Oracle.connect('hr', 'hrpwd', dsn_tns)

Within the scope of a Connection object (such as assigned to the db

variable above) you can get the database version by querying the

version attribute (an extension to DB API 2.0). This can be used to

make Python programs Oracle-version dependent. Likewise, you can get

the connect string for the connection by querying the dsn attribute.

>>> print db.version

10.2.0.1.0

>>> versioning = db.version.split('.')

>>> print versioning

['10', '2', '0', '1', '0']

>>> if versioning[0]=='10':

... print "Running 10g"

... elif versioning[0]=='9':

... print "Running 9i"

...

Running 10g

>>> print db.dsn

localhost:1521/XE

Cursor Objects

You can define an arbitrary

number of cursors using the cursor() method of the Connection object.

Simple programs will do fine with just a single cursor, which can be

used over and over again. Larger projects might however require several

distinct cursors.

>>> cursor = db.cursor()

Application logic often requires clearly distinguishing the stages of

processing a statement issued against the database. This will help

understand performance bottlenecks better and allow writing faster,

optimized code. The three stages of processing a statement are:

Parse (optional)cx_Oracle.Cursor.parse([statement])

Not really required to be called because SQL statements are

automatically parsed at the Execute stage. It can be used to validate

statements before executing them. When an error is detected in such a

statement, a DatabaseError exception is raised with a corresponding

error message, most likely "ORA-00900: invalid SQL statement,

ORA-01031: insufficient privileges or ORA-00921: unexpected end of SQL

command."

Executecx_Oracle.Cursor.execute(statement, [parameters], **keyword_parameters)

This method can accept a single argument - a SQL statement - to be run

directly against the database. Bind variables assigned through the

parameters or keyword_parameters arguments can be specified as a

dictionary, sequence, or a set of keyword arguments. If dictionary or

keyword arguments are supplied then the values will be name-bound. If a

sequence is given, the values will be resolved by their position. This

method returns a list of variable objects if it is a query, and None

when it's not.

cx_Oracle.Cursor.executemany(statement, parameters)

Especially useful for bulk inserts because it can limit the number of

required Oracle execute operations to just a single one. For more

information about how to use it please see the "Many at once" section

below.

Fetch (optional)—Only used for queries (because

DDL and DCL statements don't return results). On a cursor that didn't

execute a query, these methods will raise an InterfaceError exception.cx_Oracle.Cursor.fetchall()

Fetches all remaining rows

of the result set as a list of tuples. If no more rows are available,

it returns an empty list. Fetch actions can be fine-tuned by setting

the arraysize attribute of the cursor which sets the number of rows to

return from the database in each underlying request. The higher setting

of arraysize, the fewer number of network round trips required. The

default value for arraysize is 1.

cx_Oracle.Cursor.fetchmany([rows_no])

Fetches the next rows_no rows from the database. If the parameter isn't

specified it fetches the arraysize number of rows. In situations where

rows_no is greater than the number of fetched rows, it simply gets the

remaining number of rows.

cx_Oracle.Cursor.fetchone()

Fetches a single tuple from the database or none if no more rows are available.

Before going forward with cursor examples please

welcome the pprint function from the pprint module. It outputs Python

data structures in a clean, readable form.

>>> from pprint import pprint

>>> cursor.execute('SELECT * FROM jobs')

[, ,

, ]

>>> pprint(cursor.fetchall())

[('AD_PRES', 'President', 20000, 40000),

('AD_VP', 'Administration Vice President', 15000, 30000),

('AD_ASST', 'Administration Assistant', 3000, 6000),

('FI_MGR', 'Finance Manager', 8200, 16000),

('FI_ACCOUNT', 'Accountant', 4200, 9000),

|

('PR_REP', 'Public Relations Representative', 4500, 10500)] cx_Oracle cursors are iterators. These powerful Python

structures let you iterate over sequences in a natural way that fetches

subsequent items on demand only. Costly database select operations

naturally fit into this idea because the data only gets fetched when

needed. Instead of creating or fetching the whole result set, you

iterate until the desired value is found or another condition

fulfilled. >>> cursor = db.cursor()

>>> cursor.execute('SELECT * FROM jobs')

[, ,

, ]

>>> for row in cursor: ## notice that this is plain English!

... print row

...

('AD_VP', 'Administration Vice President', 15000, 30000)

('AD_ASST', 'Administration Assistant', 3000, 6000)

('FI_MGR', 'Finance Manager', 8200, 16000)

('FI_ACCOUNT', 'Accountant', 4200, 9000)

('AC_MGR', 'Accounting Manager', 8200, 16000)

|

('PR_REP', 'Public Relations Representative', 4500, 10500) Just after an execute list(cursor) does the same job as

cursor.fetchall(). This is because the built-in list() function

iterates until the end of the given iterator.

Datatypes

During the fetch stage, basic

Oracle data types get mapped into their Python equivalents. cx_Oracle

maintains a separate set of data types that helps in this transition.

The Oracle - cx_Oracle - Python mappings are:

Oracle

cx_Oracle

Python

VARCHAR2

NVARCHAR2

LONG

cx_Oracle.STRING

str

CHAR

cx_Oracle.FIXED_CHAR

NUMBER

cx_Oracle.NUMBER

int

FLOAT

float

DATE

cx_Oracle.DATETIME

datetime.datetime

TIMESTAMP

cx_Oracle.TIMESTAMP

CLOB

cx_Oracle.CLOB

cx_Oracle.LOB

BLOB

cx_Oracle.BLOB

The above data types are usually

transparent to the user except for cases involving Large Objects. As of

version 4.3, cx_Oracle still handles them itself and not wrapped with

the built-in file type.

Other

data types that are not yet handled by cx_Oracle include XMLTYPE and

all complex types. All queries involving columns of unsupported types

will currently fail with a NotSupportedError exception. You need to

remove them from queries or cast to a supported data type.

For example, consider the following table for storing aggregated RSS feeds:

CREATE TABLE rss_feeds (

feed_id NUMBER PRIMARY KEY,

feed_url VARCHAR2(250) NOT NULL,

feed_xml XMLTYPE

); When trying to query this table with Python, some additional

steps need to be performed. In the example below XMLType.GetClobVal()

is used to return XML from the table as CLOB values.

>>> cursor.execute('SELECT * FROM rss_feeds')

Traceback (most recent call last):

File "", line 1, in cursor.execute('SELECT * FROM rss_feeds')

NotSupportedError: Variable_TypeByOracleDataType: unhandled data type 108

>>> cursor.execute('SELECT feed_id, feed_url, XMLType.GetClobVal(feed_xml) FROM rss_feeds')

[, ,

] You might have already noticed the cx_Oracle.Cursor.execute*

family of methods returns column data types for queries. These are

lists of Variable objects (an extension to DB API 2.0), which get the

value None before the fetch phase and proper data values after the

fetch. Detailed information about data types is available through the

description attribute of cursor objects. The description is a list of

7-item tuples where each tuple consists of a column name, column type,

display size, internal size, precision, scale and whether null is

possible. Note that column information is only accessible for SQL

statements that are queries.

>>> column_data_types = cursor.execute('SELECT * FROM employees')

>>> print column_data_types

[, ,

, ,

, ,

, ,

, ,

]

>>> pprint(cursor.description)

[('EMPLOYEE_ID', , 7, 22, 6, 0, 0),

('FIRST_NAME', , 20, 20, 0, 0, 1),

('LAST_NAME', , 25, 25, 0, 0, 0),

('EMAIL', , 25, 25, 0, 0, 0),

('PHONE_NUMBER', , 20, 20, 0, 0, 1),

('HIRE_DATE', , 23, 7, 0, 0, 0),

('JOB_ID', , 10, 10, 0, 0, 0),

('SALARY', , 12, 22, 8, 2, 1),

('COMMISSION_PCT', , 6, 22, 2, 2, 1),

('MANAGER_ID', , 7, 22, 6, 0, 1),

('DEPARTMENT_ID', , 5, 22, 4, 0, 1)]

Bind Variable Patterns

As advertised by Oracle guru Tom Kyte, bind variables are core

principles of database development. They do not only make programs run

faster but also protect against SQL injection attacks. Consider the

following queries:

SELECT * FROM emp_details_view WHERE department_id=50

SELECT * FROM emp_details_view WHERE department_id=60

SELECT * FROM emp_details_view WHERE department_id=90

SELECT * FROM emp_details_view WHERE department_id=110When run one-by-one, each need to be parsed separately which adds

extra overhead to your application. By using bind variables you can

tell Oracle to parse a query only once. cx_Oracle supports binding

variables by name or by position.

Passing bind variables by name requires the parameters argument

of the execute method to be a dictionary or a set of keyword arguments.

query1 and query2 below are equivalent:

>>> named_params = {'dept_id':50, 'sal':1000}

>>> query1 = cursor.execute('SELECT * FROM employees

WHERE department_id=:dept_id AND salary>:sal', named_params)

>>> query2 = cursor.execute('SELECT * FROM employees

WHERE department_id=:dept_id AND salary>:sal', dept_id=50, sal=1000)

When using named bind variables you can check the currently assigned ones using the bindnames() method of the cursor:

>>> print cursor.bindnames()

['DEPT_ID', 'SAL']

Passing by position is similar but you need to be careful about naming.

Variable names are arbitrary so it's easy to mess up queries this way.

In the example below, all three queries r1, r2, and r3 are equivalent.

The parameters variable must be given as a sequence.

>>> r1 = cursor.execute('SELECT * FROM locations

WHERE country_id=:1 AND city=:2', ('US', 'Seattle'))

>>> r2 = cursor.execute('SELECT * FROM locations

WHERE country_id=:9 AND city=:4', ('US', 'Seattle'))

>>> r3 = cursor.execute('SELECT * FROM locations

WHERE country_id=:m AND city=:0', ('US', 'Seattle')) When binding, you can first prepare the statement and then

execute None with changed parameters. Oracle will handle it as in the

above case, governed by the rule that one prepare is enough when

variables are bound. Any number of executions can be involved for

prepared statements. >>> cursor.prepare('SELECT * FROM jobs WHERE min_salary>:min')

>>> r = cursor.execute(None, {'min':1000})

>>> print len(cursor.fetchall())

19 You have already limited the number of parses. In the next

paragraph we'll be eliminating unnecessary executions, especially

expensive bulk inserts.

Many at Once

Large insert operations don't require many separate inserts because

Python fully supports inserting many rows at once with the

cx_Oracle.Cursor.executemany method. Limiting the number of execute

operations improves program performance a lot and should be the first

thing to think about when writing applications heavy on INSERTs.

Let's create a table for a Python module list, this time directly from Python. You will drop it later.

>>> create_table = """

CREATE TABLE python_modules (

module_name VARCHAR2(50) NOT NULL,

file_path VARCHAR2(300) NOT NULL

)

"""

>>> from sys import modules

>>> cursor.execute(create_table)

>>> M = []

>>> for m_name, m_info in modules.items():

... try:

... M.append((m_name, m_info.__file__))

... except AttributeError:

... pass

...

>>> len(M)

76

>>> cursor.prepare("INSERT INTO python_modules(module_name, file_path) VALUES (:1, :2)")

>>> cursor.executemany(None, M)

>>> db.commit()

>>> r = cursor.execute("SELECT COUNT(*) FROM python_modules")

>>> print cursor.fetchone()

(76,)

>>> cursor.execute("DROP TABLE python_modules PURGE") Only one execute has been issued to the database to insert all

76 module names. This is huge performance boost for large insert

operations. Notice two small quirks here: cursor.execute(create_tab)

doesn't produce any output since it is a DDL statement and (76,) is a

tuple with a single element. (76) without a comma would simply be

equivalent to an integer 76.

Conclusion

After familiarizing yourself with basic concepts of Oracle-Python

connectivity you are ready to start writing your own database-driven

applications. I highly recommend playing with the Python interactive

shell for some time as it really brings down the learning curve.

You have learned about three stages that SQL statements go through

and how to minimize the number of steps the Oracle Database needs to

perform. Bind variables are an inevitable part of database application

development and Python enables binding them by name or by position.

You have also been introduced to the smooth transition between

Oracle and Python datatypes and the natural way of handling database

data in the context of handling cursors as iterators. All these

features boost productivity and enable focusing on the data, which is

what it's all about.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
您可以通过以下步骤下载和安装cx_Oracle库: 1. 首先,您可以从https://pypi.org/project/cx-Oracle/5.3/#files下载cx_Oracle的适用版本。请确保选择与您的Python版本和操作系统相匹配的文件。比如,如果您使用的是Python 3.6和64位的Windows系统,您可以下载cx_Oracle-5.3-11g.win-amd64-py3.6-2.exe文件。 2. 下载完成后,双击运行下载的安装文件,按照提示进行安装。在安装过程中,您可能需要指定要使用的Python环境。如果您的系统中安装了多个Python版本,请确保选择正确的版本。如果安装后出现问题,可能需要修改您的Python系统PATH。 3. 另外,您还需要安装Oracle客户端。您可以登录https://pypi.org/project/cx-Oracle/#files,下载与您的Python版本和操作系统相匹配的whl文件。比如,如果您使用的是Python 3.6和64位的Windows系统,您可以下载cx_Oracle-8.3.0-cp36-cp36m-win_amd64.whl文件。 4. 下载完成后,将whl文件放置在您希望安装的位置,比如d:\python。 5. 打开命令行窗口,进入到whl文件所在的目录,然后运行以下命令来安装cx_Oracle: ``` pip install cx_Oracle-8.3.0-cp36-cp36m-win_amd64.whl ``` 6. 安装完成后,您可以在Python代码中导入cx_Oracle库,并使用它来连接和操作Oracle数据库。以下是一个连接测试的示例代码: ```python import pandas as pd import cx_Oracle as oracle db = oracle.connect('用户名/密码@主机ip地址/orcl') cursor = db.cursor() sql = 'select * from dual' df = pd.read_sql(sql, con=db) cursor.close() db.close() df.head() ``` 请注意,您需要将用户名、密码和主机IP地址替换为实际的值。这段代码将连接到Oracle数据库,并从dual表中读取数据,并使用pandas库将结果存储在DataFrame中。 #### 引用[.reference_title] - *1* *3* [python中安装cx_Oracle模块](https://blog.csdn.net/weixin_44100044/article/details/126034475)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [windows 下Python或者Spyder离线安装cx_Oracle 包](https://blog.csdn.net/u013756405/article/details/125766396)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值