豆瓣影评情感分析:朴素贝叶斯算法的Python实现

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:个人转正述职报告PPT模板制作要点及重要性介绍。涵盖报告的基本结构、撰写高效工作回顾的技巧、自我评价的关键点、工作体会的分享方法、未来工作规划的步骤,以及PPT模板设计要素,旨在帮助职场人士提升述职报告质量,增强职业竞争力。 基于python朴素贝叶斯实现的豆瓣影评情感分析

1. 豆瓣影评情感分析简介

情感分析作为自然语言处理(NLP)领域的热门研究方向,旨在识别和提取文本信息中的主观信息,评估文本所表达的情绪倾向性。在本章中,我们将引入豆瓣影评情感分析的背景和意义,探索它是如何通过分析影评文本帮助我们理解公众对电影的普遍感受。这不仅对电影制片人和营销人员在市场决策上提供了数据支持,也为普通观众在选择电影时提供了参考。此外,我们会概览本文将要介绍的核心内容,包括朴素贝叶斯算法的理论基础、使用Python实现算法的过程,以及数据处理和特征工程的策略,最后探讨实践应用和未来发展方向。通过这一系列内容的学习,读者将对情感分析有一个全面的理解,并能够掌握使用朴素贝叶斯算法进行情感分类的技术。

2. 朴素贝叶斯算法理论基础

2.1 概率论基础回顾

2.1.1 条件概率与贝叶斯定理

概率论是研究随机事件及其发生的概率的学科。在机器学习中,尤其是在贝叶斯算法中,概率论起着核心作用。条件概率是指在给定某些其他事件发生的条件下,某事件发生的概率。在朴素贝叶斯算法中,我们主要关注的是后验概率,即已知某些证据(特征)的情况下,某类标签出现的概率。

贝叶斯定理是概率论中的一个重要公式,用于描述两个条件概率之间的关系。贝叶斯定理的数学表达式为:

[ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} ]

其中,( P(A|B) ) 是条件概率,表示在事件B发生的条件下事件A发生的概率;( P(B|A) ) 是条件概率,表示在事件A发生的条件下事件B发生的概率;( P(A) ) 和 ( P(B) ) 分别是事件A和B的边缘概率。

2.1.2 联合概率与边缘概率

联合概率是指两个或多个事件同时发生的概率。例如,( P(A \cap B) ) 表示事件A和事件B同时发生的概率。边缘概率则是指在联合概率中忽略某些事件后的概率。例如,如果我们想要求得事件A的概率,而不管事件B是否发生,我们可以对事件B的所有可能性进行求和,得到边缘概率 ( P(A) )。

2.2 朴素贝叶斯分类器原理

2.2.1 概述与数学模型

朴素贝叶斯分类器是基于贝叶斯定理和特征条件独立假设的简单概率分类器。之所以被称为“朴素”,是因为它假设所有的特征都是相互独立的。尽管这个假设在现实世界中很少成立,但朴素贝叶斯分类器在实际应用中通常表现得很好。

朴素贝叶斯分类器的数学模型可以表示为:

[ P(C_k|X) = \frac{P(X|C_k) \cdot P(C_k)}{P(X)} ]

其中,( P(C_k|X) ) 是后验概率,即给定特征向量X的条件下,类别 ( C_k ) 的概率;( P(X|C_k) ) 是在类别 ( C_k ) 条件下,观察到特征向量X的概率;( P(C_k) ) 是类别的先验概率;而 ( P(X) ) 是特征向量X的边缘概率。

2.2.2 分类器的工作流程

朴素贝叶斯分类器的工作流程可以分为以下几个步骤:

  1. 首先,计算每个类别的先验概率 ( P(C_k) )。
  2. 接着,对于每个类别 ( C_k ),计算在该类别下观察到数据集X的条件概率 ( P(X|C_k) )。
  3. 然后,利用贝叶斯定理计算后验概率 ( P(C_k|X) )。
  4. 最后,选择具有最大后验概率的类别作为预测结果。

2.2.3 后验概率最大化原理

在分类任务中,我们的目标是找到最有可能的类别标签。根据贝叶斯定理,我们可以通过最大化后验概率来得到这个类别。朴素贝叶斯分类器就是基于这个原理,它通过计算每个类别的后验概率,并选择具有最高后验概率的类别作为预测结果。

代码块示例与解释

以下是使用Python中的 scikit-learn 库实现朴素贝叶斯分类器的一个简单示例。这段代码将演示如何加载数据集,划分训练集和测试集,训练模型,并对测试集进行预测。

from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# 加载数据集(这里假设数据集已经加载到变量X和y中)
X, y = load_data()

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化朴素贝叶斯分类器
nb_classifier = GaussianNB()

# 训练模型
nb_classifier.fit(X_train, y_train)

# 进行预测
y_pred = nb_classifier.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

在这段代码中, GaussianNB 是用于实现高斯朴素贝叶斯分类器的类,适用于连续型特征。对于分类特征,可以使用 MultinomialNB BernoulliNB

  • train_test_split 函数用于将数据集分为训练集和测试集,其中 test_size=0.2 表示测试集占总数据集的20%, random_state=42 保证了每次划分结果的可重现性。
  • fit 方法用于训练模型,它接受特征数据X_train和标签数据y_train作为输入。
  • predict 方法用于对测试集进行预测,它返回预测的标签。
  • accuracy_score 函数计算预测准确率,即正确预测的样本数除以总样本数。

以上步骤展示了朴素贝叶斯分类器的工作流程,并通过一个具体的例子对理论知识进行了实际操作的演示。

3. Python实现朴素贝叶斯算法

3.1 Python基础回顾

3.1.1 Python语言特点与优势

Python是一门高级编程语言,它以简洁明了、易于阅读而闻名。其解释型语言的特性使得Python代码在编写后无需编译就可以直接运行,这大大加快了开发速度。Python拥有丰富的第三方库,涵盖了数据分析、机器学习、网络开发、图形用户界面等众多领域,这种多样性使得Python几乎在任何场景下都有用武之地。它还支持多范式编程,包括面向对象、命令式、函数式和过程式编程。Python的可读性和易扩展性,使得开发者可以轻松地对代码进行维护和扩展。

3.1.2 Python编程环境搭建

为了在Python上实现朴素贝叶斯算法,首先需要搭建一个合适的开发环境。推荐使用Anaconda发行版,它是一个Python和R语言的开源发行版,预装了大量科学计算和数据分析相关的包。安装Anaconda后,用户可以通过conda命令轻松管理包及其依赖关系。此外,通过集成开发环境(IDE)如PyCharm或Visual Studio Code可以进一步提高开发效率。为了实现朴素贝叶斯算法,还需要安装NumPy、SciPy和scikit-learn等科学计算库。这些库可以通过conda或pip包管理器进行安装。

3.2 朴素贝叶斯算法的Python实现

3.2.1 导入库与数据准备

在Python中实现朴素贝叶斯算法,首先需要导入必要的库并准备数据集。以下是一个基础的代码示例:

# 导入所需的库
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, confusion_matrix

# 假设我们已经有一个包含影评文本和标签的数据集
reviews = np.array([...])  # 影评文本数据
labels = np.array([...])   # 对应的情感标签,例如:正面或负面

# 文本向量化处理
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(reviews)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

在上述代码中,我们首先导入了 numpy CountVectorizer (用于文本向量化)、 train_test_split (用于数据集划分)和朴素贝叶斯的实现 MultinomialNB 等模块。接下来,我们定义了包含影评文本和对应情感标签的数组。然后,使用 CountVectorizer 将文本数据转换成数值特征向量,最后将数据集划分为训练集和测试集。

3.2.2 训练模型与预测

在准备好了数据之后,我们可以训练朴素贝叶斯模型并进行预测:

# 训练朴素贝叶斯分类器
clf = MultinomialNB()
clf.fit(X_train, y_train)

# 使用训练好的模型进行预测
y_pred = clf.predict(X_test)

# 输出预测准确率
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

这里,我们实例化了 MultinomialNB 类,并使用训练集数据 X_train y_train 进行拟合。完成模型训练后,我们使用模型对测试集 X_test 进行预测,并打印预测的准确率。这个准确率指标是我们衡量模型性能的一个重要参考。

3.2.3 模型评估与优化策略

模型的评估是确保其泛化能力的关键步骤,而模型的优化则能进一步提升性能。朴素贝叶斯模型也不例外,我们可以通过多种方式进行评估和优化:

# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print(cm)

# 优化策略
# 例如,可以尝试调整模型的alpha参数来实现Laplace平滑,以防止零概率问题
from sklearn.feature_extraction.text import TfidfVectorizer

# 使用TF-IDF替换词频向量化
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(reviews)

# 重新划分数据集,并训练新的模型
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)
clf = MultinomialNB(alpha=1.0)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

# 评估新模型性能
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

通过计算混淆矩阵,我们可以看到模型在各个类别上的表现情况,这对于理解模型可能存在的偏误非常有用。在优化策略方面,我们尝试了使用TF-IDF代替词频来进行特征提取,并调整了模型的alpha参数。alpha参数是Laplace平滑项的一部分,通过增加它,我们可以降低模型对训练集的过拟合程度。

通过上述步骤,我们不仅完成了朴素贝叶斯算法的实现,还进行了模型评估和初步优化。为了深入理解模型的内在机制和工作原理,下一节将详细探讨朴素贝叶斯算法的数学模型和工作流程。

4. 数据处理与特征工程

在开展机器学习项目时,数据的质量往往比算法本身更为关键。数据处理与特征工程是确保高质量数据的关键步骤,这直接影响了模型的性能。在本章节中,我们将深入探讨数据预处理的重要性和特征提取与选择的方法,以及它们在朴素贝叶斯算法中的应用。

4.1 数据预处理的重要性

4.1.1 数据清洗过程

数据清洗是数据预处理中最为关键的一步,它涉及到消除数据中的噪声、填补缺失值、纠正异常值以及解决不一致性等问题。在处理文本数据时,常见的一些步骤包括:

  • 去除无关字符 :例如删除HTML标签、URL链接、特殊符号等。
  • 大小写转换 :统一文本为全小写或全大写,以避免因大小写不同而导致的重复数据。
  • 停用词过滤 :删除常见但对分析无意义的词汇,如“的”、“是”、“在”等。
  • 词干提取与词形还原 :将词汇还原为基本形式,减少词汇的变体。

代码示例:

import re

def clean_text(text):
    text = re.sub(r'<[^>]+>', '', text)  # 去除HTML标签
    text = text.lower()                  # 转换为小写
    text = re.sub(r'[^a-z0-9\s]', '', text)  # 移除非字母数字字符
    return text

# 示例文本
text = "This is a Sample Text, with <b>HTML</b> Tags!"
cleaned_text = clean_text(text)
print(cleaned_text)

在上述代码中,我们使用了正则表达式来清洗文本。首先去除了HTML标签,然后将所有字符转换为小写,并移除了非字母数字的特殊字符。

4.1.2 数据集划分方法

在数据集准备完成后,下一步是将其分为训练集和测试集。这一步对于评估模型性能至关重要,因为它可以防止模型对训练数据过拟合,并确保模型在未知数据上的泛化能力。

数据集划分可以使用多种方法,最简单的一种是随机划分:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)

上述代码将数据集按照80%训练集和20%测试集的比例进行划分, random_state 参数确保每次划分的结果一致,以便复现结果。

4.2 特征提取与选择

4.2.1 文本数据的特征表示

在文本分类任务中,将文本转换为机器可理解的数值型特征至关重要。通常使用的方法有:

  • 词袋模型 (Bag of Words, BoW):将文本转换为词频向量。
  • TF-IDF (Term Frequency-Inverse Document Frequency):考虑到词频和词的逆文档频率,赋予常见但不具有区分度的词较低权重。
  • Word2Vec :将词汇转换为向量空间中的点,捕捉词的语义信息。

代码示例:

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf_vectorizer = TfidfVectorizer()
X = tfidf_vectorizer.fit_transform(data)

在上述代码中,我们使用了 TfidfVectorizer 将文本数据集转换为TF-IDF特征矩阵。 fit_transform 方法会根据数据集中的词汇学习模型参数,并将文本转换为TF-IDF特征向量。

4.2.2 特征选择的方法与意义

特征选择的目的是提高模型性能和可解释性,同时减少计算成本。以下是一些常见的特征选择方法:

  • 过滤方法 :如卡方检验、信息增益、方差分析等,它们通常与性能指标结合,选择分数最高的特征。
  • 包裹方法 :如递归特征消除(RFE),迭代地选择特征并构建模型,直到达到某个条件。
  • 嵌入方法 :如正则化模型(如LASSO),在训练过程中同时进行特征选择。

代码示例:

from sklearn.feature_selection import SelectKBest, chi2

# 仅作为示例,假设data变量包含TF-IDF特征矩阵
X_new = SelectKBest(chi2, k='all').fit_transform(X, labels)

在上述代码中,我们使用了 SelectKBest 特征选择器,它基于卡方检验选择最佳特征。通过调整参数 k ,我们可以选择最佳的k个特征。

本章我们重点讨论了数据预处理和特征工程的重要性,以及在朴素贝叶斯算法中如何进行这些操作。预处理是确保机器学习模型取得良好效果的第一步,而特征工程则可以显著提高模型的性能。接下来,我们将继续深入探讨如何将这些方法应用于豆瓣影评情感分析的实际案例中。

5. 豆瓣影评情感分析实践应用

5.1 数据集构建与分析需求

在进行情感分析之前,我们需要构建合适的数据集并明确我们的分析需求。本章节将深入探讨如何选择合适的数据集,并定义情感分析的目标。

5.1.1 豆瓣影评数据集的选择

豆瓣影评数据集是进行中文情感分析的常见选择之一。它不仅包含了丰富的文本评论,还有相应的标签,如正面或负面评价。数据集通常通过爬虫技术从豆瓣网站收集,或者使用公开可用的数据集。

在选择数据集时,我们需要考虑以下因素:

  • 数据集大小:较大的数据集能提供更多的信息,有助于模型学习,但也可能增加计算和存储的复杂性。
  • 数据质量:评论应该是真实的、未经修改的,并且涉及到的电影需要具有一定的代表性。
  • 多样性:数据集应覆盖不同类型的电影,包括不同的评分和评论风格。
  • 标签平衡:正面和负面评论的数量应大致平衡,以避免模型偏向于更常见的类别。

5.1.2 情感分析的目标定义

情感分析的目标是识别和提取文本数据中的主观信息。在我们的案例中,目标是确定影评中表达的情感倾向——是正面的还是负面的。

情感分析通常分为三种类型:

  • 二分类情感分析:将文本分为正面或负面两种情感类别。
  • 多分类情感分析:将文本分为正面、中立和负面三种或以上的情感类别。
  • 细粒度情感分析:在多分类的基础上进一步划分情感程度,例如,将正面分为非常正面、稍微正面等。

为了简化问题,我们通常从二分类情感分析开始。模型的输出通常是情感倾向的概率分数,我们可以根据分数确定情感类别。

5.2 情感分类模型的构建

构建情感分类模型是本章的核心部分,我们将讨论模型构建流程、训练与测试、以及性能评估指标。

5.2.1 模型构建流程概述

模型构建流程可以分为以下几个步骤:

  1. 数据预处理:包括数据清洗(去除无效评论、标点符号等)、文本分词、去除停用词、词干提取等。
  2. 特征提取:将文本数据转换为机器学习模型可理解的格式,如词袋模型、TF-IDF或Word Embeddings。
  3. 模型选择:选择合适的机器学习模型。对于情感分析,朴素贝叶斯是一个常见的起点。
  4. 模型训练:使用训练数据集来训练模型,这通常包括选择合适的参数和优化策略。
  5. 模型测试与验证:使用验证集和测试集来评估模型的性能。
  6. 模型调整:根据测试结果调整模型参数,可能包括交叉验证和网格搜索。

5.2.2 模型的训练与测试

在训练模型之前,需要将数据集分为训练集、验证集和测试集。训练集用于模型学习,验证集用于模型调优,测试集用于最后的性能评估。

伪代码如下:

from sklearn.model_selection import train_test_split

# 假设data是包含影评和标签的DataFrame
X_train, X_temp, y_train, y_temp = train_test_split(data['review'], data['sentiment'], test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)

训练模型:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline

# 创建TF-IDF向量化器和朴素贝叶斯分类器的管道
model = make_pipeline(TfidfVectorizer(), MultinomialNB())

# 训练模型
model.fit(X_train, y_train)

测试模型:

# 使用验证集评估模型
validation_accuracy = model.score(X_val, y_val)
print(f"Validation Accuracy: {validation_accuracy}")

# 使用测试集评估模型
test_accuracy = model.score(X_test, y_test)
print(f"Test Accuracy: {test_accuracy}")

5.2.3 模型性能评估指标

评估情感分析模型时,常用的指标包括准确率、精确率、召回率和F1分数。这些指标可以帮助我们从不同角度了解模型的性能。

from sklearn.metrics import classification_report

# 使用验证集进行预测
y_pred = model.predict(X_val)

# 生成性能报告
report = classification_report(y_val, y_pred, target_names=['Negative', 'Positive'])
print(report)

准确率(Accuracy)告诉我们模型正确预测的比例。然而,如果数据集不平衡,精确率(Precision)和召回率(Recall)将更有用。精确率描述了模型识别为正类别的样本中,真正属于正类别的比例;召回率描述了所有实际为正类别的样本中,模型正确识别的比例。F1分数是精确率和召回率的调和平均值,用于衡量模型的总体性能。

通过这些指标,我们可以对模型进行综合评价,并采取措施进行优化。

6. 结果分析与未来展望

随着朴素贝叶斯算法在豆瓣影评情感分析中的应用,我们已经探索了从理论到实践的各个层面。接下来,我们将详细分析实验的结果,并探讨朴素贝叶斯在情感分析领域的未来应用前景。

6.1 情感分析结果的解读

6.1.1 实验结果的可视化呈现

通过实验,我们获得了一组基于朴素贝叶斯模型的情感分析结果。为了更好地理解这些结果,我们借助于数据可视化技术,将分类结果以图形化方式展现出来。以下是一个例子:

import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns

# 假设y_true和y_pred是真实的标签和模型预测的标签
cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d")
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.title('Confusion Matrix Visualization')
plt.show()

此代码段使用了 matplotlib seaborn 库来生成一个混淆矩阵的热力图,我们可以清晰地看到模型在不同类别上的预测表现。

6.1.2 模型存在的问题与改进

虽然我们的模型在整体上表现不错,但在某些方面仍有改进空间。例如,模型在处理中性影评时的准确率相对较低,这可能是因为中性情感难以明确分类。以下是几点可能的改进方向:

  • 增强数据集 :增加更多样化的影评数据,特别是中性情感的样本。
  • 特征工程优化 :尝试不同的文本处理和特征选择方法,如TF-IDF加权或词嵌入技术。
  • 模型调整 :调整朴素贝叶斯模型的先验概率或使用更复杂的算法,如多项式朴素贝叶斯或高斯朴素贝叶斯。

6.2 基于朴素贝叶斯的情感分析应用前景

6.2.1 行业应用案例分析

朴素贝叶斯在情感分析领域的成功案例广泛。例如,在社交媒体监控中,它可以快速分析用户的帖子情感倾向,帮助企业及时了解市场情绪。在产品评论分析中,企业可以自动分类客户反馈为正面、中性或负面,以便更好地进行客户服务和产品改进。

6.2.2 情感分析技术的未来趋势

情感分析技术正随着机器学习和自然语言处理的快速发展而进步。未来的趋势可能包括:

  • 多模态情感分析 :结合文本、声音和图像数据进行情感分析,提供更全面的情绪解读。
  • 深度学习的集成 :随着深度学习技术的成熟,未来情感分析可能更多地采用如RNN、LSTM和Transformer等模型,以捕捉更复杂的语言特征。
  • 实时情感分析 :能够实时分析并响应用户情感,为即时决策提供支持,比如在客户支持聊天机器人中的应用。

情感分析作为自然语言处理的一个重要分支,已经并将继续在商业、社交媒体和公共政策等领域发挥着重要作用。随着技术的不断进步,基于朴素贝叶斯的情感分析将在精确度和速度上都达到新的高度。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:个人转正述职报告PPT模板制作要点及重要性介绍。涵盖报告的基本结构、撰写高效工作回顾的技巧、自我评价的关键点、工作体会的分享方法、未来工作规划的步骤,以及PPT模板设计要素,旨在帮助职场人士提升述职报告质量,增强职业竞争力。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

基于ARIMAX的多变量预测模型python源码+数据集(下载即用),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计、大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即用)基于ARIMAX的多变量预测模型python源码+数据集(下载即
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值