python concatenate fit_《Python深度学习》第三章笔记

本文介绍了使用Keras构建深度学习模型的基础知识,包括层的构造、模型定义、损失函数与优化器的选择。通过二分类(IMDB评论情感分析)和多分类(路透社主题预测)的例子,展示了从数据预处理到模型训练的完整流程,涉及到二元交叉熵、分类交叉熵损失函数以及RMSprop优化器。
摘要由CSDN通过智能技术生成

深度学习的核心组件

1、层

可以将层看作深度学习的乐高积木,在 Keras 中,构建深度学习模型就是将相互兼容的多个层拼接在一起,以建立有用的数据变换流程

层兼容性(layer compatibility):每一层接受特定形状的输入张量,返回特定形状的输出张量

注意:Keras构建网络的过程中,第一层需要显示输入形状input_shape=(xxx) 后续的层不需要输入形状,因为可以从上一层中推导得出

2、模型

深度学习模型是层构成的有向无环图,一个模型就是一个网络拓扑结构,选定了一个模型就意味着定义了一个假设空间(hypothesis space),也就意味着将假设空间限定为一系列特定的张量运算,将输入数据映射为输出数据。

"温故知新"机器学习的一种定义:在预先定义好的假设空间中,利用反馈信号的指引来寻找输入数据的有用表示

3、损失函数与优化器

一般损失函数的选择:

二分类问题:二元交叉熵(binary crossentropy)损失函数;

多分类问题:分类交叉熵(categorical crossentropy)损失函数;

回归问题:均方误差(MSE,mean-squared error)损失函数;

序列学习问题:联结主义时序分类(CTC,connectionist temporal classification)损失函数

Keras开发基本流程

(1) 定义训练数据:输入张量和目标张量。

(2) 定义层组成的网络(或模型),将输入映射到目标。(构建模型)

(3) 配置学习过程:选择损失函数、优化器和需要监控的指标。(编译)

(4) 调用模型的 fit 方法在训练数据上进行迭代。(训练)

Keras示例

二分类问题

数据来源:互联网电影数据库(IMDB)的50000条严重两极分化的评论

训练集25000条,测试集25000条

from keras.datasets import imdb

from keras import models, layers

import numpy as np

##1、加载IMDB数据集

(train_data, train_labels),(test_data, test_labels) = imdb.load_data(num_words=10000)

##2、数据预处理(转换成可输入到神经网络的张量)

def vectorize_sequences(sequences, dimension=10000):

results = np.zeros((len(sequences),dimension))

for i,sequence in enumerate(sequences):

results[i,sequence] = 1

#注意这里的sequence是个列表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值