python实现 交叉熵损失函数_PyTorch的SoftMax交叉熵损失和梯度用法

本文介绍了如何在PyTorch中使用SoftMax交叉熵损失函数进行多分类任务,并展示了相应的梯度计算过程。通过示例代码详细说明了`torch.nn.NLLLoss`和`torch.nn.CrossEntropyLoss`两种方法的使用,以及它们与`log_softmax`的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算

关于softmax_cross_entropy求导的过程,可以参考HERE

示例:

# -*- coding: utf-8 -*-

import torch

import torch.autograd as autograd

from torch.autograd import Variable

import torch.nn.functional as F

import torch.nn as nn

import numpy as np

# 对data求梯度, 用于反向传播

data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), requires_grad=True)

# 多分类标签 one-hot格式

label = Variable(torch.zeros((3, 3)))

label[0, 2] = 1

label[1, 1] = 1

label[2, 0] = 1

print(label)

# for batch loss = mean( -sum(Pj*logSj) )

# for one : loss = -sum(Pj*logSj)

loss = torch.mean(-torch.sum(label * torch.log(F.softmax(data, dim=1)), dim=1))

loss.backward()

print(loss, data.grad)

输出࿱

### 使用 PyTorch 中的交叉熵损失函数 在机器学习领域,尤其是深度学习中,交叉熵损失函数被广泛应用于分类问题。对于多类别的分类任务,`nn.CrossEntropyLoss` 是 PyTorch 提供的一个非常方便的选择[^1]。 此模块不仅实现了标准的 Softmax 层还集成了负对数似然损失 (NLL),这意味着可以简化模型构建过程而无需显式地添加额外的操作层。具体来说,在前向传播过程中,输入张量会先经过一个隐式的 softmax 变换再传递给 NLL 损失计算部分;而在反向传播期间,则自动处理梯度回传至前面各层所需的信息。 #### 创建并应用 Cross Entropy Loss 函数 为了创建 `CrossEntropyLoss` 对象,可以直接调用其构造器: ```python import torch.nn as nn criterion = nn.CrossEntropyLoss() ``` 当准备训练数据时,请注意确保标签是以整数值的形式给出而不是 one-hot 编码形式。这是因为内部已经包含了将 logits 转换成概率分布的过程。假设有一个简单的例子用于说明如何使用这个损失函数来进行单次迭代更新权重参数: ```python # 假设 batch_size=3, num_classes=5 output = model(input) # output.shape should be [batch_size, num_classes], e.g., [3, 5] target = torch.tensor([1, 0, 4]) # target labels must match the number of samples and range from 0 to C-1 where C is classes count. loss = criterion(output, target) print(f'Loss value: {loss.item()}') ``` 上述代码片段展示了如何定义损失函数以及怎样利用它来评估模型输出与真实标签之间的差异程度,并据此调整优化方向以最小化该差距。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值