python实现 交叉熵损失函数_PyTorch的SoftMax交叉熵损失和梯度用法

本文介绍了如何在PyTorch中使用SoftMax交叉熵损失函数进行多分类任务,并展示了相应的梯度计算过程。通过示例代码详细说明了`torch.nn.NLLLoss`和`torch.nn.CrossEntropyLoss`两种方法的使用,以及它们与`log_softmax`的关系。
摘要由CSDN通过智能技术生成

在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算

关于softmax_cross_entropy求导的过程,可以参考HERE

示例:

# -*- coding: utf-8 -*-

import torch

import torch.autograd as autograd

from torch.autograd import Variable

import torch.nn.functional as F

import torch.nn as nn

import numpy as np

# 对data求梯度, 用于反向传播

data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), requires_grad=True)

# 多分类标签 one-hot格式

label = Variable(torch.zeros((3, 3)))

label[0, 2] = 1

label[1, 1] = 1

label[2, 0] = 1

print(label)

# for batch loss = mean( -sum(Pj*logSj) )

# for one : loss = -sum(Pj*logSj)

loss = torch.mean(-torch.sum(label * torch.log(F.softmax(data, dim=1)), dim=1))

loss.backward()

print(loss, data.grad)

输出࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值