语言雅克比迭代法求线性方程组的解_计算方法/数值分析第三章 线性方程组的数值解法...

本文介绍了线性方程组的数值解法,包括高斯消去法和迭代法。高斯消去法通过消元转化为三角形方程组求解,但小主元可能导致误差。为解决这个问题,引入了列主元高斯消去法。此外,文章详细讲解了雅可比迭代法,作为线性方程组的迭代解法之一。
摘要由CSDN通过智能技术生成

主要内容:

1、引言

2、高斯消去法

3、直接分解法

4、解线性方程组的迭代法

5、向量范数、矩阵范数及迭代法的收敛性

第一节 引言

用克拉姆求解线性方程组

第二节 高斯消去法

高斯消去法是一种古老的直接法,其基本思想是通过消元将线性方程组的求解问题转化成三角形式方程组的求解问题。

1、上三角形方程组

34008eaccea857b25b13e5e33d147fc2.png

9943abd315e63d1a0f82de668cd552b9.png

则上方程组可以写成矩阵形式:

Ux=b

当 det(U) ≠0时,即aii≠0时,方程组有唯一解。

求解上述方程组:

6f29def1596c3e4e8a748da0cb4bc3c7.png

170c36535bc5696b9055eda535fb3bf9.png

一般地,假设已经求得xn,xn-1....xi+1,带入第i 个方程得到:

617918745159ba6208bf65ab3b2a2992.png

6c5f86ea22f7b0a4939a0fbb85ee3cd4.png

此过程称为回代过程。

2、回代过程的计算量

(1)乘除法运算次数

462338068bb8d5e12b999c9ba07e2302.png

(2)加减法运算次数

2e74fc829e2c5e18c715b720a803e110.png

f69cfd95c00ec5042eaeb2884d5deecf.png

第二节 高斯消去法

1、高斯消去法:

68332c853112b98609d806e2b9bf2fb7.png

对一般的n阶方程组,消去过程分n-1步:第一步消去a11下方元素,第二步消去a22下方元素,……,第n-1步消去an-1,n-1下方元素。

具体步骤如下:

第一步消元:

60315c492bdfcf04da9d33656595054a.png

第二步消元:

60315c492bdfcf04da9d33656595054a.png

0a721827c592b90073cd09442956c2c6.png

.........

.........

k步消元:

b0ae1bad0348aa9cf6f35e2b5df7ff5b.png

n-1步后:

cecdb7ccc3e0a316929befc91bdf6783.png

fd1b777b30032cc3f5a95091be11db3f.png

d67939da4071f0ac967c7c82a7b2750d.png

2.列主元高斯消去法

高斯消去法消去过程中,第k步求n-k个倍数用到的除数,称为主元。它若为零或接近于零,计算机将“溢出”而停止计算,或产生较大误差。

8512255606d75078cba0709fa271312b.png

准确到九位小数的解是x1=0.250 001 875,x2=0.499 998 749,若在4位计算机上按高斯消去法求解

53345687087f962cd6406702a8b712dc.png

回代解得 x2=0.5, x1=0,显然严重失真。

造成这种结果的原因,就是小主元的出现。用它做除数产生大乘数,出现大数吃小数产生舍入误差

解决方法:为了避免出现小主元,可在第k步的第k列的元素 中选主元,即在其中找出绝对值最大的元素

然后交换第k和第p行,继续进行消去过程。交换行相当于改变方程顺序,不会影响原方程组的解。这种消去法称为列主元消去法。

6612e49f5f3d87be2c8bdd1d0dcc024f.png

98563caad79dd478203e939db9b0fa44.png

第三节、直接分解法

第四节、解线性方程组的迭代法

1、迭代法的基本思想

设有线性代数方程组:

a11 x1+a12 x2+····+a1n xn=b1

a21x1+a22x2+····+a2nxn=b2

. . . . . .

an1x1+an2x2+····+annxn=bn

用矩阵表示: Ax =b

其中A 为系数矩阵,非奇异且设aii≠0;b为右端常数项,x为解向量

则方程组的一个等价变换为:x=Bx+f

任取初始向量x(0),按照下列公式构造迭代序列:

2bd91eb0521e51d34d1e71357cf9b969.png

2、迭代公式:

2bd91eb0521e51d34d1e71357cf9b969.png

迭代矩阵:B

3.不同的迭代矩阵构成不同的迭代法,介绍两种迭代法:

雅可比迭代法

高斯-赛德尔迭代法

4.雅可比迭代法

公式推导:

a11x1+a12x2+····+a1nxn=b1

a21x1+a22x2+····+a2nxn=b2

. . . . . .

an1x1+an2x2+····+annxn=bn

2b311711f5a0e273fae9cde8450a89c7.png

d5cf79f886c959e5e5bfb2a35a6b7d28.png

dd81987098b7059eb0739a8b4f133b0e.png

730513e982b69cd2f9b3f2e82186a1bc.png

18334fa29478014ae53f8e7b758e0b04.png

5.高斯-赛德尔迭代法

f4c1aa0ffd7adaa25ab5bfad3cfdb75c.png

第五节 向量范数、矩阵范数及迭代法收敛性

向量范数和矩阵范数是研究迭代法及其收敛性、估计方程组近似解的误差的一种有力工具。

1、向量范数

定义:(1)绝对值

范数的最简单的例子,是绝对值函数

a65dfa7396e6e858f4f1e763af6aaa12.png

(2)范数的另一个简单例子是二维欧氏空间的长度

29f78ff7285ed66a573fc0f2e3d50dc7.png

(3)设x = (x1, x2,…, xn)T,则有:

——向量的1范数:

b329888833a4676c6b431d4e674d158a.png

——向量的2范数

9bff52e10d61bf082f6a0922140cb499.png

——向量的无穷范数:

c0a9a734c3ea140571302bff9f49999d.png

例题:

x=[1 2 3]T,求x的1范数,2范数和无穷范数

解:根据定义可以得到:

9f9c3228a311f5c444c16c9332a4e813.png

f5b38c0db7529ab54225ded322d1e2d1.png

3df6294fa4ce7b892227804f4ba9c18e.png

2、矩阵范数

定义:

对于任意n 阶方阵A,按一定的规则有一实数与之对应,记为||A||,若||A||满足:

(1)正定:

0c70d072112abec9ae32ca9d2b7f6fae.png

(2)

806ea3e9e0ccf72984e0bd99d9c7ee38.png

(3)

5d54b11b666eab8551649627aa4b768b.png

则||A||称为矩阵A的范数

矩阵范数与向量范数的相容性

对于任意的n 维向量x,都有:

4b72959b6ed4544b443f7fcf1134b8a4.png

这一性质称为矩阵范数与向量范数的相容性。

常用的矩阵范数:

a922fd6c121d85265d753e42829db3f8.png

6fa5e7c9052077bd54144d5988d9ad00.png

237bc561d519bcb46ef4c88a9bcabeea.png

d09af2c20b898cd92e024ce8cd0ea334.png

acfff9690e641487a8201a84aace8415.png

注释:矩阵B的特征值表示为

cfe02b3649913a328e47c4bb550a6ad5.png

则特征值的最大绝对值称为B的谱半径,记为:

55d6a49aa9d0da2a906588353988e416.png

则矩阵的2范数其实为AAT的谱半径的平方根。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值