有限覆盖定理证明区间套_实数的完备性定理

本文旧版pdf:链接:https://pan.baidu.com/s/1LK2uS9G05h1A5YHHH4TMrw 提取码:zpcc

本文新版pdf(含书签): 链接:https://pan.baidu.com/s/1DDnfsbzyIi0NQNW53OjpfQ 提取码:g0jt

UPDATE:本文于2020.12.29更新到新版。如无明显错误,本文将不再更新。

实数系的公理、定理和性质列表

我们假定实数的完备性(连续性)公理是:

0 戴德金原理 Dedekind completeness

实数系还有七个关于连续性的基本定理,它们分别是:

  1. 确界存在原理 least-upper-bound property
  2. 单调有界定理 monotone convergence theorem
  3. 闭区间套定理 nested convergence theorem
  4. 有限覆盖定理 Heine-Borel theorem
  5. 聚点定理 Bolzano-Weierstrass theorem
  6. 致密性定理 Bolzano-Weierstrass theorem
  7. 柯西收敛原理 Cauchy completeness

此外,阿基米德性质是实数系的重要性质:

8 阿基米德性质 Archimedean property

上述九个命题的内容陈述如下:

0 戴德金原理 下列表述是等价的,因此任意一个可作为戴德金原理。(等价的证明见这篇文章或本文末尾附录部分) 【表述一】对
的任何非空子集
,则
【表述二】如果
的两个子集
满足如下性质:
那么
1 确界存在原理
的任何非空子集
,若
内有上界,则
内有上确界。
2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。 3 闭区间套定理 如果数列
满足以下两个条件:
那么以下两个结论成立:
(该极限值记为
② 上述
是满足
的唯一实数。
4 有限覆盖定理 如果开区间所形成的开区间集
覆盖一个闭区间
,那么总可以从
中选取有限个开区间,使得这有限个开区间覆盖
5 聚点定理 每个
上无穷、有界的子集
都有至少一个聚点。
6 致密性定理 任一有界数列都有收敛的子列。 7 柯西收敛原理 数列
收敛的充要条件是
8 阿基米德性质 下列表述是等价的,因此任意一个可作为阿基米德性质。(等价的证明见这篇文章或本文末尾附录部分) 【表述一】
【表述二】
【表述三】
【表述四】
(即
【表述五】
(即

命题之间的逻辑关系及证明路径

在给定

是有序域的情况下,上述九个命题之间的逻辑关系是:

也即,戴德金原理、单调有界定理、有限覆盖定理、聚点定理、致密性定理是彼此等价的,闭区间套定理和柯西收敛原理稍弱一些,但是再加上阿基米德性质就与前面各命题等价了。

下面我们按如下步骤证明如上的逻辑关系

  • 链条一
  • 链条二
  • 链条三
  • 链条四

画成有向图就是:

246901d1f2195feda4e69d4a15595e4a.png

从上图就可以看出,确实反映了我们想要的逻辑关系。

链条一

1 确界存在原理
的任何非空子集
,若
内有上界,则
内有上确界。

在本链条中,我们以确界存在原理为起点。

1→0【表述二】

0 戴德金原理 【表述二】 如果
的两个子集
满足如下性质:
那么

证明:因为

,所以
有上界。由确界存在原理知,
有上确界。同理
有下确界。设
。现在我们找一点
满足

(1)如果

,那么
,取
即可。

(2)如果

,那么
。下面再分两种情况:

(2.1)如果

,那么
,取
即可。

(2.2)如果

,那么
。又
,故
。因为
,所以
。因为
,所以
,这与
矛盾,故本情况不存在。

综上所述,总能找到

使

0【表述二】→1

1 确界存在原理
的任何非空子集
内有上界,则
内有上确界。

证明:定义集合

,定义集合

下面说明

满足原理0的三个条件:

①:因为

有上界,所以
,令
,则
,故
,故
。由
的定义知
,又
,故
。因
非空,故

②:由

③:任取

。由
,由
的定义知
。因为
,故
,从而

由①②③和原理0知

。下面证明

(1)在①中已证

,故

(2)因为

,故
,由
的定义知
。又
,故
。这样我们就证明了:

由(1)(2)知

,即
有上确界。

链条二

1 确界存在原理
的任何非空子集
内有上界,则
内有上确界。

在本链条中,我们以确界存在原理为起点。

1→2

2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。

证明:设数列

有上界,根据确界存在原理,数列
有上确界

由上确界的定义,

对上述

,由上确界的定义和单调递增知

,即

综上,

2→3+8【表述四】

3 闭区间套定理 如果数列
满足以下两个条件:
那么以下两个结论成立:
(该极限值记为
② 上述
是满足
的唯一实数。
8 阿基米德性质 【表述四】
(即

闭区间套定理的结论①的证明:由条件①

知:

数列

单调递增且有上界
,数列
单调递减且有下界

由单调有界定理知

收敛

由极限的减法知

,即

闭区间套定理的结论②的证明:(存在性)由单调有界定理的证明过程可知

由上、下确界的定义知

(唯一性)设另一个

也满足条件

,由夹逼定理知道

阿基米德性质【表述四】的证明:容易验证

单调有界,因此由单调有界收敛原理知有极限
。注意到
的子列,由子列具有相同的极限知
,但由极限的乘法法则知
,因此
,故

3+8【表述五】→1

1 确界存在原理
的任何非空子集
内有上界,则
内有上确界。

证明:假设

是有上界的非空集合,考虑
所有上界构成的集合
,我们要证明
存在。

显见

。任取
,则有

,则令
,否则令
。此时有

,则令
,否则令
。此时有

这样就得到闭区间套

,由阿基米德性质知满足
,且
。由闭区间套定理,
是唯一满足
的实数,此时有
。下面我们证明
。只需证明两点:(1)
(2)

(1)反证法。假设

,则由
的定义知
。取
,则
,即
,又
,故
,这与
矛盾。

(2)反证法。假设

,取
,则
,即
,又
,故
,这与
矛盾。

综合(1)(2)知

,即
有上确界。

链条三

2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。

在本链条中,我们以单调有界定理为起点。

2→3+8

链条二中已证。

3+8【表述五】→4

4 有限覆盖定理 如果开区间所形成的开区间集
覆盖一个闭区间
,那么总可以从
中选取有限个开区间,使得这有限个开区间覆盖

证明:用反证法。假设

不能被
中的有限个开区间覆盖。

等分

为两个区间:
,则其中至少有一个区间不能被
中有限个开区间覆盖,设为
。再等分
为两个区间,则其中也是至少有一个区间不能被
中有限个开区间覆盖,记为
。这个过程可以无限重复下去,这就得到了一个无穷闭区间列
。显见它满足以下三个条件:

①每一个闭区间

都不能被
中有限个开区间覆盖。

(阿基米德性质)

由②③,根据闭区间套定理知

由覆盖的定义知

中有一个开区间
使

由数列极限的保序性知道,

也即

。这表明,只要是形如
的闭区间,都可以被一个开区间
覆盖,但这和①是矛盾的。

4→5

5 聚点定理 每个
上无穷、有界的子集
都有至少一个聚点。

证明:因为

有界,所以它包含于一个闭区间
。现在证明
有聚点。

反证法。假设

没有聚点,那么每个
的邻域
至多含
中有限个数。定义
,由有限覆盖定理,
中有限个开区间就可以覆盖
,即
。由于每一个
都至多含
中有限个数,故
至多含
中有限个数,又
,故
至多含有限个数,与
是无穷集合矛盾。

5→6

6 致密性定理 任一有界数列都有收敛的子列。

证明:设数列

有界,其值域是

如果

是有限集,那么存在
使
(其中
),这样得到的子列
收敛;

如果

是无限集,那么由聚点定理知
上有一聚点
,使
的任何邻域
都含
中无限个数。特别地,
,……,
,……,这样就构造出一个子列
。由
,即子列
收敛。

6→2

2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。

证明:设数列

单调递增有上界。由致密性定理,存在
的子列
收敛,设收敛于
。假设
,则当
充分大时
,由
的递增性就有
,这样
,矛盾。因此假设不成立,故
。此时由
知对于任何
,存在
使得
,特别地
。取
,则对于任何
就有
。连起来就知道
,即数列
收敛。

链条四

7 柯西收敛原理 数列
收敛的充要条件是

在本链条中,我们以柯西收敛原理为起点。

73

3 闭区间套定理 如果数列
满足以下两个条件:
那么以下两个结论成立:
(该极限值记为
② 上述
是满足
的唯一实数。

①的证明:不妨设

。显见
递增,有
,因此
,也即
。由柯西收敛原理,
收敛,设其极限为
。有
=

②的证明:(存在性)先证明

。反证法。假定
,取
,则
,这与
矛盾,因此
。同理可证

(唯一性)设另一个

也满足条件

,由夹逼定理知道

3→7

7 柯西收敛原理 数列
收敛的充要条件是

必要性的证明:由

收敛,不妨设
,则
,此时

充分性的证明:设数列

满足
,特别取
就有
,即数列
收敛于
。分两种情况:

(1)假设

中只有有限项是正数,则
从某项以后均为
,即
从某项以后恒为常数,故数列
收敛。

(2)假设

有无限项是正数,则取这无限项的子列为
,有

,存在
使得
,特别取
就有
。故令
,就会有

一般地,不妨设已构造好

使
。对
,存在
使得
,特别取
就有
。故令
,就会有

由上述构造,我们有:

根据闭区间套原理知

。这样,对于任何
,存在
使
。令
,则对于任何
。故
,即数列
收敛。

到此,我们完成了所有链条的证明。


附录

0 戴德金原理 各种表述的等价性证明

0 戴德金原理 下列表述是等价的,因此任意一个可作为戴德金原理 【表述一】对
的任何非空子集
,则
【表述二】如果
的两个子集
满足如下性质:
那么

【表述一】→【表述二】

证明:这是显然的。

【表述二】→【表述一】

证明:定义

。易知
,从而
非空,即
满足原理0'的条件①。下面分两种情况。

情况1:如果

,那么显见
,取
即可。

情况2:如果不是情况1 ,那么

。对于后者,取
,则由
可得
,由
可得
,但这就变成了情况1,矛盾,所以只能是前者
,即
满足原理0'的条件③。

假设

,那么
,从而有
,矛盾,故假设不成立,所以
,故
,即
满足原理0'的条件②。

由原理0',

,又
,故
,取
即可。

8 阿基米德性质 各种表述的等价性证明

8 阿基米德性质 下列表述是等价的,因此任意一个可作为阿基米德性质。 【表述一】
【表述二】
【表述三】
【表述四】
(即
【表述五】
(即

证明:

  • 【表述一】→【表述二】:
    ,分两种情况:(1)若
    ,则取
    ,自然有
    ;(2)若
    ,则
    。由表述一知道
    ,即
  • 【表述二】→【表述三】:令表述二中
    即得。
  • 【表述三】→【表述四】:对任何
    ,则
    。由表述三知道,存在
    使得
    。因此对于任何
    就有
  • 【表述四】→【表述五】:归纳可证
    ,故表述四的最后可变为
  • 【表述五】→【表述一】:
    ,由表述五知道
    ,特别取
    就有
    。令
    ,就有

点此回到目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值