本文旧版pdf:链接:https://pan.baidu.com/s/1LK2uS9G05h1A5YHHH4TMrw 提取码:zpcc
本文新版pdf(含书签): 链接:https://pan.baidu.com/s/1DDnfsbzyIi0NQNW53OjpfQ 提取码:g0jt
UPDATE:本文于2020.12.29更新到新版。如无明显错误,本文将不再更新。
实数系的公理、定理和性质列表
我们假定实数的完备性(连续性)公理是:
0 戴德金原理 Dedekind completeness
实数系还有七个关于连续性的基本定理,它们分别是:
- 确界存在原理 least-upper-bound property
- 单调有界定理 monotone convergence theorem
- 闭区间套定理 nested convergence theorem
- 有限覆盖定理 Heine-Borel theorem
- 聚点定理 Bolzano-Weierstrass theorem
- 致密性定理 Bolzano-Weierstrass theorem
- 柯西收敛原理 Cauchy completeness
此外,阿基米德性质是实数系的重要性质:
8 阿基米德性质 Archimedean property
上述九个命题的内容陈述如下:
0 戴德金原理 下列表述是等价的,因此任意一个可作为戴德金原理。(等价的证明见这篇文章或本文末尾附录部分) 【表述一】对的任何非空子集和,若,则【表述二】如果的两个子集和满足如下性质:①②③那么1 确界存在原理 对的任何非空子集,若在内有上界,则在内有上确界。2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。 3 闭区间套定理 如果数列和满足以下两个条件:①②那么以下两个结论成立: ①(该极限值记为)② 上述是满足的唯一实数。4 有限覆盖定理 如果开区间所形成的开区间集覆盖一个闭区间,那么总可以从中选取有限个开区间,使得这有限个开区间覆盖。5 聚点定理 每个上无穷、有界的子集都有至少一个聚点。6 致密性定理 任一有界数列都有收敛的子列。 7 柯西收敛原理 数列收敛的充要条件是8 阿基米德性质 下列表述是等价的,因此任意一个可作为阿基米德性质。(等价的证明见这篇文章或本文末尾附录部分) 【表述一】【表述二】【表述三】【表述四】(即)【表述五】(即)
命题之间的逻辑关系及证明路径
在给定
也即,戴德金原理、单调有界定理、有限覆盖定理、聚点定理、致密性定理是彼此等价的,闭区间套定理和柯西收敛原理稍弱一些,但是再加上阿基米德性质就与前面各命题等价了。
下面我们按如下步骤证明如上的逻辑关系
- 链条一
- 链条二
- 链条三
- 链条四
画成有向图就是:
从上图就可以看出,确实反映了我们想要的逻辑关系。
链条一
1 确界存在原理 对的任何非空子集,若在内有上界,则在内有上确界。
在本链条中,我们以确界存在原理为起点。
1→0【表述二】
0 戴德金原理 【表述二】 如果的两个子集和满足如下性质: ①②③那么
证明:因为
(1)如果
(2)如果
(2.1)如果
(2.2)如果
综上所述,总能找到
0【表述二】→1
1 确界存在原理 对的任何非空子集, 若在内有上界,则在内有上确界。
证明:定义集合
下面说明
①:因为
②:由
③:任取
由①②③和原理0知
(1)在①中已证
(2)因为
由(1)(2)知
链条二
1 确界存在原理 对的任何非空子集,若在内有上界,则在内有上确界。
在本链条中,我们以确界存在原理为起点。
1→2
2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。
证明:设数列
由上确界的定义,
对上述
即
综上,
2→3+8【表述四】
3 闭区间套定理 如果数列和满足以下两个条件:①②那么以下两个结论成立: ①(该极限值记为)② 上述是满足的唯一实数。8 阿基米德性质 【表述四】(即)
闭区间套定理的结论①的证明:由条件①
数列
由单调有界定理知
由极限的减法知
闭区间套定理的结论②的证明:(存在性)由单调有界定理的证明过程可知
由上、下确界的定义知
(唯一性)设另一个
又
阿基米德性质【表述四】的证明:容易验证
3+8【表述五】→1
1 确界存在原理 对的任何非空子集, 若在内有上界,则在内有上确界。
证明:假设
显见
若
若
这样就得到闭区间套
(1)反证法。假设
(2)反证法。假设
综合(1)(2)知
链条三
2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。
在本链条中,我们以单调有界定理为起点。
2→3+8
链条二中已证。
3+8【表述五】→4
4 有限覆盖定理 如果开区间所形成的开区间集覆盖一个闭区间,那么总可以从中选取有限个开区间,使得这有限个开区间覆盖。
证明:用反证法。假设
等分
①每一个闭区间
②
③
由②③,根据闭区间套定理知
由覆盖的定义知
由数列极限的保序性知道,
也即
4→5
5 聚点定理 每个上无穷、有界的子集都有至少一个聚点。
证明:因为
反证法。假设
5→6
6 致密性定理 任一有界数列都有收敛的子列。
证明:设数列
如果
如果
6→2
2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。
证明:设数列
链条四
7 柯西收敛原理 数列收敛的充要条件是
在本链条中,我们以柯西收敛原理为起点。
7→3
3 闭区间套定理 如果数列和满足以下两个条件: ①②那么以下两个结论成立: ①(该极限值记为) ② 上述是满足的唯一实数。
①的证明:不妨设
②的证明:(存在性)先证明
(唯一性)设另一个
又
3→7
7 柯西收敛原理 数列收敛的充要条件是
必要性的证明:由
充分性的证明:设数列
(1)假设
(2)假设
对
一般地,不妨设已构造好
由上述构造,我们有:
- ①
- ②
根据闭区间套原理知
到此,我们完成了所有链条的证明。
附录
0 戴德金原理 各种表述的等价性证明
0 戴德金原理 下列表述是等价的,因此任意一个可作为戴德金原理 【表述一】对的任何非空子集和, 若,则【表述二】如果的两个子集和满足如下性质: ①②③那么
【表述一】→【表述二】
证明:这是显然的。
【表述二】→【表述一】
证明:定义
情况1:如果
情况2:如果不是情况1 ,那么
假设
由原理0',
8 阿基米德性质 各种表述的等价性证明
8 阿基米德性质 下列表述是等价的,因此任意一个可作为阿基米德性质。 【表述一】【表述二】【表述三】【表述四】(即) 【表述五】(即)
证明:
- 【表述一】→【表述二】:
,分两种情况:(1)若,则取,自然有;(2)若,则。由表述一知道,即
- 【表述二】→【表述三】:令表述二中
即得。
- 【表述三】→【表述四】:对任何
,则。由表述三知道,存在使得。因此对于任何就有
- 【表述四】→【表述五】:归纳可证
,故表述四的最后可变为
- 【表述五】→【表述一】:
,由表述五知道,特别取就有。令,就有
点此回到目录