欢迎关注@同心圆数学世界,为你提供更多的数学复习资料。
网页不支持数学公式,试题和参考答案请以图片为准。
题型大全
参考答案
答案解析
一、选择题
1. D.考点:分式的加减法.
分析根据分式的加减法法则计算即可.
解答解:①:同分母分式的加减法法则,正确;
②:合并同类项法则,正确;
③:提公因式法,正确,
④:分式的基本性质,故错误;
点评此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.
2. D.分析分式有意义的条件是分母不为0.
解答解:∵代数式有意义,
∴x﹣3≠0,
∴x≠3.
点评本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件.
3. D.分析直接利用分式的基本性质分析得出答案.
解答解:分式可变形为:﹣.
点评此题主要考查了分式的基本性质,正确将原式变形是解题关键.
4. C.分析直接利用合并同类项法则以及单项式除以单项式、分式的约分、二次根式的加减运算法则分别化简得出答案.
解答解:A、3x3﹣5x3=﹣2x3,故此选项错误;B、8x3÷4x=2x2,故此选项错误;C、=,正确;D、+无法计算,故此选项错误.
点评此题主要考查了合并同类项以及单项式除以单项式、分式的约分、二次根式的加减运算,正确掌握相关运算法则是解题关键.
5. B.分析根据分式的值为零的条件可以求出x的值.
解答解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.
点评本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
二、填空题
7. 分析原式变形后,利用同分母分式的减法法则计算即可得到结果.
解答解:原式=﹣=1.故答案为:1.
点评此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
8. 分析根据分式乘除法的法则计算即可.解答解:•=,故答案为:.点评本题考查了分式的乘除法,熟记法则是解题的关键.
9.分析同分母的分式相减,就是分母不变,把分子相减即可.
解答解:原式==a+b,故答案是a+b.
点评本题考查了分式的加减法,解题的关键是因式分解、约分.
三、计算题
10. 解法一:11. 解:原式= ………………………5分
如:当时,原式=……………………………7分
注:取,0,1以外的数代入均可.
12. 解:原式==x-1
把x=2代入x-1=2-1=1
13. 分析原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答解:原式=•=•=.
14. 分析先根据分式的混合运算顺序和运算法则化简原式,再将的值化简代入计算可得.解答解:原式当时,原式.
点评本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
15. 分析先化简分式,然后将x 的值代入计算即可.
点评本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
16. 分析根据分式的运算法则即可求出答案.
由分式有意义的条件可知:x=2,∴原式=3.
点评本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
17. 分析根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a<2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.
当a=﹣2时,原式==﹣1.
点评本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
18. 分析先根据分式加减运算法则化简原式,再将y=﹣x+8代入计算可得.
解答解:原式=+==,当x≠y,y=﹣x+8时,原式=x+(﹣x+8)=8.
点评本题主要考查分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.
19. 分析根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.点评本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法。
20. 分析根据分式的除法和减法可以化简题目中的式子,然后将、的值代入化简后的式子即可解答本题.点评本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
四、解答题(本大题共2小题,每小题8分,共16分)
21. 分析根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.点评本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
22. 分析先做括号里面,再把除法转化成乘法,计算得结果.
点评本题考查了分式的混合运算.解决本题的关键是掌握分式的运算顺序和分式加减乘除的运算法则.
23. 分析先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
点评本题主要考查分式的化简求值,
解题的关键是熟练掌握分式的混合运算顺序和运算法则.
24. 分析根据分式的减法和除法可以化简题目中的式子,然后根据a2+3a﹣2=0,可以求得所求式子的值.点评本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
25. 分析根据分式的除法和加法可以化简题目中的式子,然后由不等式组,可以求得的取值范围,再从中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.
点评本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.
26. 分析(2)先化简分式,然后将x 的值代入计算即可.
27. 分析根据分式的减法和乘除法可以化简题目中的式子,然后将x=y+2019代入化简后的式子即可解答本题.
∵x=y+2019,∴原式=y+2019﹣y=2019.点评本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
四、应用题
28. 分析:原式第一项约分后利用同分母分式的加法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值;
点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
29. 考点分式的化简求值;二次根式有意义的条件.
分析原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.
解答解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.
五、猜想、探究题30.