
今天包sir 给大家分享一份超全的“不等式求解”方法,对于这部分知识比较薄弱的同学,可以来系统的复习啦!

不等式基本知识
1
基本性质

2
运算性质

3
常用不等式

▼
不等式的证明方法
常用的方法有:比较法、分析法、综合法、归纳法、反证法、类比法、放缩法、换元法、判别式法、导数法、几何法、构造函数、数轴穿针法等。
1
比较法

2
分析法

3
综合法


4
数学归纳法

5
反证法

6
类比法

7
放缩法
常用放缩公式:


8
换元法
常用换元方法:


9
判别式法

10
导数法(单调性)

11
构造函数法


12
数轴穿针法

▼
含绝对值不等式的解法
1
分类讨论

2
两边平方法(承接例1)

3
图像法

4
等价转化法(承接例1)
5
运用线性规划求解

6
运用绝对值的几何意义

▼
含参一元二次不等式例解
含有参数的不等式应用的比较多的是分类讨论思想,①其思路是一般先将式子因式分解或分解因式或分母有理化,然后再结合参数对称轴、判别式、根的正负进行讨论;②当无法进行因式分解的时候多涉及对称轴或者利用导数求解,下面结合例题解析。
1
二次项不含参数


2
二次项含参数


▼
不等式恒成立问题
1
恒成立问题的基本类型

恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
2
利用判别式解

3
利用分离常数解

4
利用变换参数来解
(该法适用于题中已给出参数的界限)

5
利用最值

6
数形结合

▼
练习题

声明:文章转载自高中数学解题研究会333528558;如存在文章/图片/音视频使用不当的情况,或来源标注有异议等,请联系我们第一时间处理。