不等式两边加绝对值_重点解析丨不等式求解方法归纳(优选)

本文由包sir分享全面的不等式求解方法,包括不等式基本性质、证明技巧和含绝对值不等式的解法。讲解了比较法、分析法、换元法等多种解题策略,并提供了含参一元二次不等式的实例解析,助力考试得分。关注包sir获取更多学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

130937c99a54b561686352272fe1fd1f.png

今天包sir 给大家分享一份超全的“不等式求解”方法,对于这部分知识比较薄弱的同学,可以来系统的复习啦!

27085d5cf6cf707228aa0714ef04eac6.png

不等式基本知识

1

基本性质

20b724ec76823b004ff511365d007160.png

2

运算性质

793c2bf0ff2ad208627225622c8528d5.png

3

常用不等式

b057634462f2cb8f5d137b931352c7d8.png

不等式的证明方法

常用的方法有:比较法、分析法、综合法、归纳法、反证法、类比法、放缩法、换元法、判别式法、导数法、几何法、构造函数、数轴穿针法等。

1

比较法

4b8b1815224cb8f6a70521be970411c7.png

2

分析法

fc12eceec3208cb0e63ae2e6c7b9fa08.png

3

综合法

c4a5721bcc3beeb31f1fa1832b5c553e.png

aa497c0d6a99c9341a9566ca750d7d80.png

4

数学归纳法

2a7580d6aed095c453464e56a105e615.png

5

反证法

407999db811b784fe541738c77addb44.png

6

类比法

aecb0e0778217c20ad6e0dba4a7ac727.png

7

放缩法

常用放缩公式:

36314a46645edfca9762b1f24042d3a9.png

d2367da8511e8c0bc6804a97690fdd64.png

8

换元法

常用换元方法:

3e73a97b1871b6cf9b8e63dd2b94a813.png

bc5aa657d9f94f39c3f6e7f87e293539.png

9

判别式法

29c6587572faf2820f7aa8ff6a59561a.png

10

导数法(单调性)

65693863ec6128f6b6ac098d41534bf7.png

11

构造函数法

89ff11511c03d1b29f168a62d6de1b8b.png

ea8a1c19a2941ae6da62ff6919de0946.png

12

数轴穿针法

b0e8b30c339fbd1a43990bbda4578c04.png

含绝对值不等式的解法

1

分类讨论

3ccb5b91a25fb70521ac6fb60c7e5625.png

2

两边平方法(承接例1)

29906535aeabb360c24e1d1266b328ae.png

3

图像法

7b936a9dbc28bfd2345f1348f0f16f86.png

4

等价转化法(承接例1)

5

运用线性规划求解

0b2a056d6feb8c7e79b4457d75ac4b6d.png

6

运用绝对值的几何意义

02069415a5f0aa46c7c33986d23e74f3.png

含参一元二次不等式例解

含有参数的不等式应用的比较多的是分类讨论思想,①其思路是一般先将式子因式分解或分解因式或分母有理化,然后再结合参数对称轴、判别式、根的正负进行讨论;②当无法进行因式分解的时候多涉及对称轴或者利用导数求解,下面结合例题解析。

1

二次项不含参数

10932a8109e8979fd282761933766898.png

355f78a5075b521cf0ec7ee5e9a67e01.png

2

二次项含参数

c1b6ca073ff3c5b1da5b02ea8e02068b.png

8c85e6f20a8cb5c9737ef42b5d64d1ce.png

不等式恒成立问题

1

恒成立问题的基本类型

cbbb82d84d1409929bfa0b9dd5e86d92.png

恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。

2

利用判别式解

be2259b7936c50c87ca9b187ea7cc0f9.png

3

利用分离常数解

b37233035b962ad47a66d7cf6e17f1b6.png

4

利用变换参数来解

(该法适用于题中已给出参数的界限)

c02ae716da21236e2b1edf93b5feb379.png

5

利用最值

980700b5c861759d0a63c9c3fd8de4b3.png

6

数形结合

ac2531c8a22295ae5e6f9e8258ca0af0.png

练习题

2ac8b3f1078c9a9846e6b1493d28f237.png

声明:文章转载自高中数学解题研究会333528558;如存在文章/图片/音视频使用不当的情况,或来源标注有异议等,请联系我们第一时间处理。

只有掌握这些答题技巧,考试时才能攻无不克,战无不胜~拔得头筹~

更多有效学习方法,快来关注包sir 哟~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值