求抛物线和直线交点_高中数学:直线与抛物线的位置关系

本文深入探讨了直线与抛物线的交点问题,包括如何利用联立方程、弦长公式和特殊技巧解决相关问题。通过具体的例题解析,阐述了直线过焦点时的弦长计算、切线交点轨迹、中点弦问题以及切线问题,并提供了求解面积最大值的方法。文章适合高中生和数学爱好者学习参考。
摘要由CSDN通过智能技术生成

【基础回顾】 一、课本基础提炼 1.研究直线与抛物线的位置关系,一般是联立两曲线方程,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”、“整体代入”、“点差法”以及定义的灵活应用. 2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式af1b624f58b03e2803f3b7bc678de66f.png 二、二级结论必备 过抛物线焦点的动直线与抛物线交于点A,B,则该抛物线在点A,B处的两切线的交点轨迹是抛物线的准线. 【技能方法】 1.直线与抛物线相交时的弦长问题 若直线过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用|AB|=x1+x2+p;若直线不过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用83910edd5f8f0b8b1d8c7ce67e0865a1.png,对于此类问题,应熟练地利用韦达定理设而不求计算弦长,另外注意与面积有关的问题,常用到弦长公式. 

例1.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8. (1)求抛物线C的方程; (2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求0bd553abff90ce60b3b747288b1bbe6a.png的最小值. 【解析】 (1)由题可知F1354d6f31f15f016da70ad06b8a08015.png, 则该直线方程为3901c5d203aa016ecb7b7f5bc562c811.png 代入y2=2px(p>0),得4b3a6a847eab20ec31c373087ec27863.png 设M(x1,y1),N(x2,y2), 则有x1+x2=3p. ∵|MN|=8, ∴x1+x2+p=8,即3p+p=8,解得p=2, ∴抛物线的方程为y2=4x. 92e198e568a9cedcde8a0d686cb366c1.png(2)设直线l的方程为y=x+b,代入y2=4x,得x2+(2b-4)x+b2=0. ∵l为抛物线C的切线,∴Δ=0,解得b=1. ∴l的方程为y=x+1. 设P(m,m+1),则d8b676cc689616ada1a0d91a3f35d0fa.png=(x1-m,y1-(m+1)),1e3382d2b4d1f25b40ed759ad8dd43c8.png=(x2-m,y2-(m+1)), ∴0bd553abff90ce60b3b747288b1bbe6a.png=(x1-m)(x2-m)+[y1-(m+1)][y2-(m+1)] =x1x2-m(x1+x2)+m2+y1y2-(m+1)(y1+y2)+(m+1)2. 由(1)可知:x1+x2=6,x1x2=1, ∴(y1y2)2=16x1x2=16,y1y2=-4. a792026c770f2f4b05418aa51d090d6c.png 8b7cc6ea937460e9842c26b639b4a186.png2d7ea3d08678244a88c85465739f4b00.png=1-6m+m2-4-4(m+1)+(m+1)2 =2(m2-4m-3)=2[(m-2)2-7]≥-14, 当且仅当m=2,即点P的坐标为(2,3)时,0bd553abff90ce60b3b747288b1bbe6a.png的最小值为-14. 例2.抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为78eb1c1ee6a14a481e4723954a31757b.png的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积. 【解析】由题意,可设l的方程为y=x+m,-5<m<0. 由方程组c93774751eed23c2dd14e372c9cc5f4e.png,消去y,得x2+(2m-4)x+m2=0 ,① ∵直线l与抛物线有两个不同交点M、N, ∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0, 解得m<1,又-5<m<0,∴m的范围为(-5,0) 设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1•x2=m2f407e650b4053a6a7a044361ec31194b.png 点A到直线l的距离为19101d49b7fcd6805a773e5a93546ce4.png c9d9bae45ed011a943928a5e9c661ae6.png,从而024de31191becae2b770b5e8b1667ef0.png=4(1-m)(5+m)2 7d9a56951843d2d41158502a816d40f4.png 698522ad058c168a1d9917838a76d369.png,当且仅当2-2m=5+m,即m=-1时取等号. 故直线l的方程为y=x-1,△AMN的最大面积为f05561270cebf786d892d6c4e0f8b81c.png 2.抛物线的中点弦问题. 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为“点差法”. 例3.已知抛物线y2=4x的一条弦的斜率为3,它与直线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值