【基础回顾】 一、课本基础提炼 1.研究直线与抛物线的位置关系,一般是联立两曲线方程,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”、“整体代入”、“点差法”以及定义的灵活应用. 2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式 二、二级结论必备 过抛物线焦点的动直线与抛物线交于点A,B,则该抛物线在点A,B处的两切线的交点轨迹是抛物线的准线. 【技能方法】 1.直线与抛物线相交时的弦长问题 若直线过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用|AB|=x1+x2+p;若直线不过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用,对于此类问题,应熟练地利用韦达定理设而不求计算弦长,另外注意与面积有关的问题,常用到弦长公式.
例1.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8. (1)求抛物线C的方程; (2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值. 【解析】 (1)由题可知F, 则该直线方程为 代入y2=2px(p>0),得 设M(x1,y1),N(x2,y2), 则有x1+x2=3p. ∵|MN|=8, ∴x1+x2+p=8,即3p+p=8,解得p=2, ∴抛物线的方程为y2=4x. (2)设直线l的方程为y=x+b,代入y2=4x,得x2+(2b-4)x+b2=0. ∵l为抛物线C的切线,∴Δ=0,解得b=1. ∴l的方程为y=x+1. 设P(m,m+1),则=(x1-m,y1-(m+1)),=(x2-m,y2-(m+1)), ∴=(x1-m)(x2-m)+[y1-(m+1)][y2-(m+1)] =x1x2-m(x1+x2)+m2+y1y2-(m+1)(y1+y2)+(m+1)2. 由(1)可知:x1+x2=6,x1x2=1, ∴(y1y2)2=16x1x2=16,y1y2=-4. , =1-6m+m2-4-4(m+1)+(m+1)2 =2(m2-4m-3)=2[(m-2)2-7]≥-14, 当且仅当m=2,即点P的坐标为(2,3)时,的最小值为-14. 例2.抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积. 【解析】由题意,可设l的方程为y=x+m,-5<m<0. 由方程组,消去y,得x2+(2m-4)x+m2=0 ,① ∵直线l与抛物线有两个不同交点M、N, ∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0, 解得m<1,又-5<m<0,∴m的范围为(-5,0) 设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1•x2=m2, 点A到直线l的距离为 ,从而=4(1-m)(5+m)2 ,当且仅当2-2m=5+m,即m=-1时取等号. 故直线l的方程为y=x-1,△AMN的最大面积为 2.抛物线的中点弦问题. 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为“点差法”. 例3.已知抛物线y2=4x的一条弦的斜率为3,它与直线