黑盒攻击的分类_深入研究对抗样本和黑盒攻击的可转移性

本文深入探讨了对抗样本和黑盒攻击的可转移性,特别是非目标攻击和目标攻击的策略,如基于优化的方法、FGS和FG方法。评估指标包括迁移性和失真度,揭示了攻击的有效性和对模型的潜在威胁。
摘要由CSDN通过智能技术生成

深入研究对抗样本和黑盒攻击的可转移性

本文内容来源于论文:Delving into Transferable Adversarial Examples and Black-box Attacks

非目标攻击方法

约束条件: $$ \begin{aligned} f_{\theta}\left(x^{\star}\right) & \neq y \ d\left(x, x^{\star}\right) & \leq B \end{aligned} $$

基于优化的方法

$$ \operatorname{argmin}{x^{\star}} \lambda d\left(x, x^{\star}\right)-\ell\left(\mathbf{1}{y}, J_{\theta}\left(x^{\star}\right)\right) $$

其中 $\ell(u, v)=\log (1-u \cdot v)$

FGS方法

$$ x^{\star} \leftarrow \operatorname{clip}\left(x+B \operatorname{sgn}\left(\nabla_{x} \ell\left(\mathbf{1}{y}, J{\theta}(x)\right)\right)\right) $$ 其中 $\ell(u, v)=\log (1-u \cdot v)$同于「基于优化的方法」

FG方法

$$ x^{\star} \leftarrow \operatorname{clip}\left(x+B \frac{\nabla_{x} \ell\left(\mathbf{1}{y}, J{\theta}(x)\right)}{\left\|\nabla_{x} \ell\left(\mathbf{1}{y}, J{\theta}(x)\right)\right\|}\right) ) $$

FG方法只是把FGS中的 $\operatorname{sgn}\left(\nabla_{x} \ell\right)$ 替换成FG中的 $\frac{\nabla x \ell}{\left\|\nabla_{x} \ell\right\|}$ 其他一样。

目标攻击

约束条件不一样了(只有第一个不一样),目标攻击的约束条件为:

$$ f_{\theta}\left(x^{\star}\right)=y^{\star}

\ d\left(x, x^{\star}\right) \leq B $$

以下3种方法中,都是用了,标准的交叉熵损失

基于优化的方法

$$ \operatorname{argmin}{x^{}} \lambda d\left(x, x^{\star}\right)+\ell^{\prime}\left(\mathbf{1}_{y^{}}, J{\theta}\left(x^{\star}\right)\right) $$

其中:the standard cross entropy loss $$ \ell^{\prime}(u, v)=-\sum_{i} u_{i} \log v_{i} $$

非目标攻击中的公式为: $$ \operatorname{argmin}{x^{\star}} \lambda d\left(x, x^{\star}\right)-\ell\left(\mathbf{1}{y}, J_{\theta}\left(x^{\star}\right)\right) $$

其中 $\ell(u, v)=\log (1-u \cdot v)$

FG & FGS 方法

$$ \begin{array}{ccc}{x^{\star} \leftarrow \operatorname{clip}\left(x-B \operatorname{sgn}\left(\nabla_{x} \ell^{\prime}\left(\mathbf{1}{y^{}}, J_{\theta}(x)\right)\right)\right)} & {(\mathrm{FGS})} \ {x^{\star} \leftarrow \operatorname{clip}\left(x-B \frac{\nabla_{x} \ell^{\prime}\left(\mathbf{1}_{y^{}}, J{\theta}(x)\right)}{\left\|\nabla_{x} \ell^{\prime}\left(\mathbf{1}{y^{\star}}, J{\theta}(x)\right)\right\|}\right)} & {(\mathrm{FG})}\end{array} $$

为什么要减?

评估方法

衡量转移性(transferability)

我们通过计算一个模型生成的对抗样本能被另一个模型正确分类的百分比,来衡量非目标攻击的迁移性。这个百分比就是准确率(accuracy)。准确率越低意味着非目标攻击的迁移性更好。

我们通过计算一个模型生成的对抗样本,被另一个模型分类为目标label的百分比,来衡量目标攻击的迁移性。这个百分比称之为匹配率(matching rate)。匹配率越高意味着目标攻击的迁移性更好。

失真度(Distortion)

除了可转移性之外,另一个重要因素是对抗图像与原始图像之间的扭曲度。

失真度可以通过下面的公式进行计算。 $$ d\left(x^{\star}, x\right)=\sqrt{\sum_{i}\left(x_{i}^{\star}-x_{i}\right)^{2} / N} $$

其中:$x^{\star} \text { and } x$是对抗图像和原始图像的向量表示。$N$ 是 $x^{\star} \text { and } x$ 的维数。$x_{i}$ 是 $x$ 在第i维度上的像素值(0~255)。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值