本地搜索攻击算法详解——DNN的黑盒对抗性扰动方法

该论文提出了一个黑盒攻击的策略,即局部搜索攻击算法,用于在不获取深度神经网络(DNN)内部信息的情况下生成对抗样本。算法通过随机扰动像素并进行局部搜索,找到能导致模型k-错误分类的小部分像素进行扰动,平均只需扰动约0.5%的像素。这种方法增强了对抗性示例的影响效果,并避免频繁扰动最敏感的像素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于对抗的测试输入生成方法是从机器学习和深度学习的角度入手,通过向原始样本添加微小扰动的方式产生对抗样本,使DNN系统进行错误分类。其又分为白盒、灰盒和黑盒攻击,顾名思义,黑盒攻击就是在无法获取模型内部结构信息的情况下,仅通过模型的输入输出来生成对抗样本。本次讲解黑盒攻击的一个经典代表算法——本地搜索攻击算法(论文:《Simple Black-Box Adversarial Perturbations for Deep Networks》)

主要内容:

这篇论文提出的对抗性攻击将网络视为黑匣子,即仅能获取输入输出信息而没有网络内部信息。主要贡献有以下几点:

  1. 随机扰动单个像素对模型预测带来的影响:随机选择像素进行扰动即可为模型生成对抗图像,但扰动图像的像素值可能超出某个预期范围。

  2. 提出基于局部搜索的像素选择方法:通过了解几个像素对输出的影响大小,将其用于更新当前图像。

  3. 只需扰动一小部分像素即可生成对抗性示例:如在 ImageNet1000 上,平均每张图片只需扰动约 0.5% 的像素。

  4. 分类错误扩展到了k-错误分类:定义了k-错误分类的概念,而非传统的k=1的简单情况。(这一点在下面说明)

首先明确对抗目标:扰动后使得模型错误分类。

本文的错误分类概念并非传统的【不同于图像原本的分类标签】,而是定义了一个k-错误分类的概念,即扰动后的图像分类预测结果要在原图像分类预测结果的至少k个其他标签以外。例如:原图I预测结果为[香蕉0.9,橘子0.8,苹果0.7,梨0.6,葡萄0.5],传统的界定方式只需要扰动后的图像I'预测结果不为香蕉即可&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海苔小饼干

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值