如何用法向量求点到平面距离_平面的方程

今天开始介绍空间中一些基本几何体的方程,介绍完了再来应用一哈.

Ⅰ.平面的基底与平面的参数方程

d511a36d49909d671f79f76f317dd75c.png

设平面中不共线三点为

equation?tex=A%28x_%7B1%7D%2Cy_%7B1%7D%2Cz_%7B1%7D%29
equation?tex=B%28x_%7B2%7D%2Cy_%7B2%7D%2Cz_%7B2%7D%29
equation?tex=C%28x_%7B3%7D%2Cy_%7B3%7D%2Cz_%7B3%7D%29

则向量

equation?tex=%5Coverset%7B%5Crightarrow+%7D%7BAB%7D%3D%28x_%7B2%7D-x_%7B1%7D%2Cy_%7B2%7D-y_%7B1%7D%2Cz_%7B2%7D-z_%7B1%7D%29
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7BAC%7D%3D%28x_%7B3%7D-x_%7B1%7D%2Cy_%7B3%7D-y_%7B1%7D%2Cz_%7B3%7D-z_%7B1%7D%29组成平面基底.

设平面内任意一点

equation?tex=P%28x%2Cy%2Cz%29,存在实数
equation?tex=%5Clambda+
equation?tex=%5Cmu+使向量
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7BAP%7D%3D%5Clambda+%5Ccdot+%5Coverset%7B%5Crightarrow+%7D%7BAB%7D%2B%5Cmu+%5Ccdot+%5Coverset%7B%5Crightarrow+%7D%7BAC%7D

转化为坐标形式有

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+x%3D%5Clambda+x_%7B2%7D%2B%5Cmu+x_%7B3%7D%2B%281-%5Clambda+-%5Cmu+%29x_%7B1%7D%5C%5C+y%3D%5Clambda+y_%7B2%7D%2B%5Cmu+y_%7B3%7D%2B%281-%5Clambda+-%5Cmu+%29y_%7B1%7D%5C%5C+z%3D%5Clambda+z_%7B2%7D%2B%5Cmu+z_%7B3%7D%2B%281-%5Clambda+-%5Cmu+%29z_%7B1%7D+%5Cend%7Barray%7D%5Cright.

先挂着吧,慢慢研究,还是希望能够服务于高中生解题.

Ⅱ.平面的法向量与平面的点法式

平面的垂线被称作平面的法线(Normal line),法的意思是,直线的方向规定了平面延展的方向.在计算机图形学中经常和这玩意打交道.

fcea3f7698ab3a4c1fd133ac570631c2.png

设平面

equation?tex=%5Calpha+的法向量为
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D%28a%2Cb%2Cc%29,平面内一定点
equation?tex=A%28x_%7B0%7D%2Cy_%7B0%7D%2Cz_%7B0%7D%29

则对于平面内任意一点

equation?tex=P%28x%2Cy%2Cz%29
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7BPA%7D%5Ccdot+%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D0(线面垂直的定义),

故点

equation?tex=P坐标满足
equation?tex=a%28x-x_%7B0%7D%29%2Bb%28y-y_%7B0%7D%29%2Bc%28z-z_%7B0%7D%29%3D0,即平面的点法式方程.

将其展开得到

equation?tex=ax%2Bby%2Bcz%2Bd%3D0,其中
equation?tex=d%3D-%28ax_%7B0%7D%2Bby_%7B0%7D%2Bcz_%7B0%7D%29,即平面方程的一般式,其为含有三个变量的一次多项式,且多项式系数为法向量的三维坐标,例如:
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7Bv%7D%3D%281%2C2%2C3%29为平面
equation?tex=x%2B2y%2B3z%2B4%3D0的法向量.

显然这可以帮高中生求平面的法向量,例如:

已知平面过点

equation?tex=A%280%2C0%2C0%29
equation?tex=B%281%2C0%2C1%29
equation?tex=C%280%2C1%2C1%29,求平面
equation?tex=ABC的法向量.

解:

设平面

equation?tex=ABC方程为
equation?tex=ax%2Bby%2Bcz%2Bd%3D0

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+d%3D0%5C%5C+a%2Bc%2Bd%3D0%5C%5C+b%2Bc%2Bd%3D0+%5Cend%7Barray%7D%5Cright.,解得
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D%281%2C1%2C-1%29,当然这只是其中一个解.

换一个随意点的例子:

已知平面过点

equation?tex=A%281%2C2%2C3%29
equation?tex=B%282%2C3%2C4%29
equation?tex=C%282%2C1%2C1%29,求平面
equation?tex=ABC的法向量.

解:

设平面

equation?tex=ABC方程为
equation?tex=ax%2Bby%2Bcz%2Bd%3D0

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+a%2B2b%2B3c%2Bd%3D0%5C%5C+2a%2B3b%2B4c%2Bd%3D0%5C%5C+2a%2Bb%2Bc%2Bd%3D0+%5Cend%7Barray%7D%5Cright.,即
equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+a%2Bb%2Bc%3D0%5C%5C+2b%2B3c%3D0+%5Cend%7Barray%7D%5Cright.,解得
equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+a%3D1%5C%5C+b%3D-3%5C%5C+c%3D2%5C%5C+d%3D-1+%5Cend%7Barray%7D%5Cright.

平面方程为

equation?tex=x-3y%2B2z%3D1,其法向量为
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D%281%2C-3%2C2%29.

①.显然这和数量积等于0那套搞法就是一回事;

②.有没有根据两点坐标求直线方程的感觉;

③.我应该好好学一下线性代数,还有语文.

Ⅲ.截距式

ae8684cfdd689c3386c2a3dde534fd53.png

考虑一个特殊的平面,过点

equation?tex=A%28x_%7B0%7D%2C0%2C0%29
equation?tex=B%280%2Cy_%7B0%7D%2C0%29
equation?tex=C%280%2C0%2Cz_%7B0%7D%29

设平面

equation?tex=ABC方程为
equation?tex=ax%2Bby%2Bcz%2Bd%3D0

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+x_%7B0%7Da%2Bd%3D0%5C%5C+y_%7B0%7Db%2Bd%3D0%5C%5C+z_%7B0%7Dc%2Bd%3D0+%5Cend%7Barray%7D%5Cright.,不妨设
equation?tex=d%3D-1,得
equation?tex=%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%2B%5Cfrac%7By%7D%7By_%7B0%7D%7D%2B%5Cfrac%7Bz%7D%7Bz_%7B0%7D%7D%3D1,其法向量为
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D%28%5Cfrac%7B1%7D%7Bx_%7B0%7D%7D%2C%5Cfrac%7B1%7D%7By_%7B0%7D%7D%2C%5Cfrac%7B1%7D%7Bz_%7B0%7D%7D%29.

像不像平面中直线的截距式?没别的意思,就是个小福利.

Ⅳ.点到平面的距离

平面外一点为

equation?tex=P%28x_%7B0%7D%2Cy_%7B0%7D%2Cz_%7B0%7D%29,平面方程为
equation?tex=ax%2Bby%2Bcz%2Bd%3D0,求点到平面的距离.

解:

d28396aa837247ffa465c591acc2ab80.png

取平面上一点

equation?tex=Q%28x_%7B1%7D%2Cy_%7B1%7D%2Cz_%7B1%7D%29,点到平面的距离为
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7BPQ%7D在法向量
equation?tex=%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D%28a%2Cb%2Cc%29上的投影的绝对值.

根据数量积定义

equation?tex=%5Coverset%7B%5Crightarrow+%7D%7BPQ%7D%5Ccdot+%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%3D%7C+%5Coverset%7B%5Crightarrow+%7D%7BPQ%7D%7C+%5Ccdot+%7C+%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%7C+%5Ccdot+%5Ccos+%5Ctheta+

equation?tex=d%3D%5Cleft%7C+%5Cleft%7C+%5Coverset%7B%5Crightarrow+%7D%7BPQ%7D%5Cright%7C+%5Ccdot+%5Ccos+%5Ctheta+%5Cright%7C+%3D%5Cfrac%7B%5Cleft%7C+%5Coverset%7B%5Crightarrow+%7D%7BPQ%7D%5Ccdot+%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%5Cright%7C+%7D%7B%5Cleft%7C+%5Coverset%7B%5Crightarrow+%7D%7Bn%7D%5Cright%7C+%7D%3D%5Cfrac%7B%5Cleft%7C+a%28x_%7B1%7D-x_%7B0%7D%29%2Bb%28y_%7B1%7D-y_%7B0%7D%29%2Bc%28z_%7B1%7D-z_%7B0%7D%29%5Cright%7C+%7D%7B%5Csqrt%7Ba%5E%7B2%7D%2Bb%5E%7B2%7D%2Bc%5E%7B2%7D%7D%7D+%5C%5C

equation?tex=Q%28x_%7B1%7D%2Cy_%7B1%7D%2Cz_%7B1%7D%29在平面
equation?tex=ax%2Bby%2Bcz%2Bd%3D0上,有
equation?tex=ax_%7B1%7D%2Bby_%7B1%7D%2Bcz_%7B1%7D%2Bd%3D0,带入上式得

equation?tex=d%3D%5Cfrac%7B%5Cleft%7C+ax_%7B0%7D%2Bby_%7B0%7D%2Bcz_%7B0%7D%2Bd%5Cright%7C+%7D%7B%5Csqrt%7Ba%5E%7B2%7D%2Bb%5E%7B2%7D%2Bc%5E%7B2%7D%7D%7D.

是不是和他二维兄弟一个模子刻出来的.

二维空间中的直线,三维空间中的平面,两者与所在空间的关系是相同的.

cancer1984:2020-10-24---空间中的直线​zhuanlan.zhihu.com
629fd5c905b1ffe8a3d4fb40e6077a0c.png
cancer1984:2020-10-27---球的方程(1)​zhuanlan.zhihu.com
d7841148f78f0ecd0e61cdce954f78c8.png
cancer1984:球的方程(2)​zhuanlan.zhihu.com
629fd5c905b1ffe8a3d4fb40e6077a0c.png
已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页