软件测试中的程序接缝指什么,接缝滑移-定滑移量常用测试标准与方法

本文详细介绍了织物接缝滑移的定滑移量测试常用标准ASTMD434-1995、ASTMD1683-2007、ISO13936.1-2004等,重点讲解了经向和纬向滑移的区别,以及测试流程、异常处理和结果分析。确保读者理解接缝性能评估的关键要素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接缝滑移-定滑移量常用测试标准与方法

已被阅读9264次

2018-12-21

织物接缝滑移,也就是之前国内所称的纰裂程度。是指织物经接缝后,缝纫处的纱线抵抗外在拉力的能力,是衡量织物接缝性能的一个重要指标。

接缝滑移-定滑移量测试常用标准与方法

ASTM D 434-1995(此标准已经被代替,但仍有很多国外买家习惯性使用)

ASTM D1683-2007 (用于代替ASTM D434-95的标准,此以标准可用于接缝强力、接缝滑移、拉伸强力等多个参数的测定)

ISO 13936.1 -2004

GB/T 13772.1-2008

AS 2001.2.22-2006

JIS L1096 -2010 8.23章节方法C

CAN/CGSB-4.2 No.32.1-98

049bff1b606c427dd606a0a09c6ec8a0.png

接缝滑移-定滑移量测试方向

测试方向总体分为二种方式

1、经向滑移是指纬纱在经纱上的滑移,对应标准:ASTM D434 、ASTM D1683

2、经向滑移是指经纱在纬纱上的滑移,对应标准:GB/T 13772.1 、ISO 13936.1

二者是相反的,所以当我们拿到测试报告时,一定得看清楚到底是哪个方向的纱线滑移比较差。这也是客户有时候比较难以理解的一个问题。现在各检测中心为让客户能够一目了然,采用了以下的结果表示方法:// 经向 (// to warp ) 表示的意思是缝线平行于经向;// 纬向(// to weft)表示的意思是缝线平行于纬向。

滑移测试基本流程:

样品调湿  =》取样 =》制样 =》设备调节 =》测试 =》结果分析

样品调湿:样品在标准的大气压环境(温度20℃、湿度65%)中调湿至少4小时,对于高回潮的样品需调湿更长的时间。

取样:由于面料的多样性,取样需具有代表性,如提花面料需根据提花情况来处理是否需测试提花部分、地组织部分的接缝滑移测试。对于涂料印花织,需考虑是否需要避开印花部位。

制样:在制样过程中,一定要严格按各标准内容规定的制样方式、制样要求进行制样。

设备调节:由于国内外不同设备产商生产的设备差异,测试前需认真了解设备状态(夹片的有效夹持面积、气动夹具的夹持压力、设备停止拉伸时灵敏程度)、参数设置(有效夹距、拉伸速率)。设备软件对数据的采集方式和采集频率是否符合标准要求。

测试:测试时,需要测试人员对样测试过程加以观察;以了解样品在测试过程中的异常现象;而不是盯着电脑屏幕上拉伸伸长曲线。

结果分析:并不是所有的测试结果都是合理的结果;我们需要对有异常情况产生的测试样品数据给予剔除,并且了解每个样品测试过程中的断裂情况,来分析测试结果的是否符合标准要求。

测试过程中断裂现象的描述

常见的织物拉伸断裂现象有几下几种,在测试过程可能会出现一种或者几种。

FTS =   Fabric Torn at Seam(织物在缝线处破裂)

STB=   Sewing Thread Breakdown(缝线断裂)

FR =    Fabric Yarn Rupture(织物断裂)

SS =    Sewnseam yarn slippage(接缝处纱线滑脱)

声明:部分图文信息来自互联网,信息内容仅供参考,如有侵权请及时告知,经核实后删除。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数- 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件道路场景,包含车辆密集分布复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参者的实时检测分类能力。 交通流监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框类别标签的精准对应。 类别平衡设计: 四类车辆样本经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质数据支撑。
内容概要:本文介绍了DeepSeekMermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeekMermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值