讽刺c语言,【其他】《围城》中运用了大量()的修辞手法来讽刺知识分子,语言幽默,令人拍案叫绝。A、反问B、排比C、拟人D、 《围城》中运用了大量()的修辞手法来讽刺知识分子,语言幽默,令人拍案叫绝。 ...

这篇博客探讨了各种数学序列和规律,包括理想分数的性质、等式模式、数列的构建以及图形变换。博主通过具体的例子展示了如何从简单的数字序列中发现复杂的数学关系,并引导读者思考和推断这些模式的通用公式。此外,还涉及到了信息安全中的加密技术,通过变换规则来保护数据的安全传输。
摘要由CSDN通过智能技术生成

我们把分子为1的分数叫理想分数,如,...,任何一个理想分数都可以写成两个不同理想分数的和,如;;...,根据对上

为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文2

观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正

将1、、、按右侧方式排列,若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是()。

下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…… 第n个数:,那么,在第10个数、第11个数、第12个

有一列数:,……,则它的第7个数是(),第n个数是()。

将边长分别为,2,3,4…的正方形的面积记作S1,S2,S3,S4…,计算S2-S1,S3-S2,S4-S3….若边长为n(n为正整数)的正方

已知(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出bn的表达式为

已知等边△OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于 点A2。 (1)求线段OA2

如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取

如下图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2011

将1、、、按右侧方式排列,若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是()。

如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.过点C作CC1⊥AB于C1,过点C1作C1C2⊥AC于C2,过点C2作C2C3⊥AB于C3,…,按此

对点(x,y )的一次操作变换记为P1(x,y ),定义其变换法则如下:P1(x,y )=(x+y,x-y);且规定Pn(x,y)=P1(Pn-1(x,y

有一列数A1,A2,A3,A4,A5,…,An,其中A1=5×2+1,A2=5×3+2,A3=5×4+3,A4=5×5+4,A5=5×6+5,…,当An=2009时,n的值等于

如图所示,直线y=x+1与 y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长 C1B1与直线y=x+

如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取

观察:,…,则an=()(n=1,2,3,…)。

为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文2

在一列数a1,a2,a3…中,a2-a1=a3-a2=a4-a3=…=,则a19=()。

填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是()。

小明玩一种的游戏,每次挪动珠子的颗数与对应所得的分数如下表:挪动珠子数(颗)23456……对应所得分数(分)26122

将一列整式按某种规律排成x,-2x2,4x3,-8x4,16x5…则排在第六个位置的整式为()。

直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有()个点。

某数学兴趣小组开展了一次活动,过程如下:设∠BAC=(0°<<90°),现把小棒依次摆放在两射线之间,并使小棒两端分别

若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算 A73=(

我们把分子为1的分数叫理想分数,如,...,任何一个理想分数都可以写成两个不同理想分数的和,如;;...,根据对上

已知直线ln:(n是不为零的自然数),当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平

观察下列等式:(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性。

下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…… 第n个数:,那么,在第10个数、第11个数、第12个

如图,在直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)……直线ln⊥x轴于点(n,0),函数y=x的图

对点(x,y )的一次操作变换记为P1(x,y ),定义其变换法则如下:P1(x,y )=(x+y,x-y);且规定Pn(x,y)=P1(Pn-1(x,y

如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作

如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7……叫做“正六边形的渐开线”,其中,,,,,,……的圆心依次按点A,

对于每个非零自然数n,抛物线与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2009B2009的值是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值