我们把分子为1的分数叫理想分数,如,...,任何一个理想分数都可以写成两个不同理想分数的和,如;;...,根据对上
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文2
观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正
将1、、、按右侧方式排列,若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是()。
下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…… 第n个数:,那么,在第10个数、第11个数、第12个
有一列数:,……,则它的第7个数是(),第n个数是()。
将边长分别为,2,3,4…的正方形的面积记作S1,S2,S3,S4…,计算S2-S1,S3-S2,S4-S3….若边长为n(n为正整数)的正方
已知(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出bn的表达式为
已知等边△OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于 点A2。 (1)求线段OA2
如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取
如下图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2011
将1、、、按右侧方式排列,若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是()。
如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.过点C作CC1⊥AB于C1,过点C1作C1C2⊥AC于C2,过点C2作C2C3⊥AB于C3,…,按此
对点(x,y )的一次操作变换记为P1(x,y ),定义其变换法则如下:P1(x,y )=(x+y,x-y);且规定Pn(x,y)=P1(Pn-1(x,y
有一列数A1,A2,A3,A4,A5,…,An,其中A1=5×2+1,A2=5×3+2,A3=5×4+3,A4=5×5+4,A5=5×6+5,…,当An=2009时,n的值等于
如图所示,直线y=x+1与 y轴相交于点A1,以OA1为边作正方形OA1B1C1,记作第一个正方形;然后延长 C1B1与直线y=x+
如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取
观察:,…,则an=()(n=1,2,3,…)。
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文2
在一列数a1,a2,a3…中,a2-a1=a3-a2=a4-a3=…=,则a19=()。
填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是()。
小明玩一种的游戏,每次挪动珠子的颗数与对应所得的分数如下表:挪动珠子数(颗)23456……对应所得分数(分)26122
将一列整式按某种规律排成x,-2x2,4x3,-8x4,16x5…则排在第六个位置的整式为()。
直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有()个点。
某数学兴趣小组开展了一次活动,过程如下:设∠BAC=(0°<<90°),现把小棒依次摆放在两射线之间,并使小棒两端分别
若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算 A73=(
我们把分子为1的分数叫理想分数,如,...,任何一个理想分数都可以写成两个不同理想分数的和,如;;...,根据对上
已知直线ln:(n是不为零的自然数),当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平
观察下列等式:(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性。
下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…… 第n个数:,那么,在第10个数、第11个数、第12个
如图,在直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)……直线ln⊥x轴于点(n,0),函数y=x的图
对点(x,y )的一次操作变换记为P1(x,y ),定义其变换法则如下:P1(x,y )=(x+y,x-y);且规定Pn(x,y)=P1(Pn-1(x,y
如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作
如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7……叫做“正六边形的渐开线”,其中,,,,,,……的圆心依次按点A,
对于每个非零自然数n,抛物线与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2009B2009的值是