一 命题趋势
基本不等式是解决函数值域、最值、不等式证明、参数范围问题的有效工具,在高考中经常考查,有时也会对其单独考查.题目难度为中等偏上.应用时,要注意“拆、拼、凑”等技巧,特别要注意应用条件,只有具备公式应用的三个条件时,才可应用,否则可能会导致结果错误.
二 知识网络
三 数学思想在不等式问题中的体现
1、分类讨论思想
例1.已知不等式,(1)求该不等式中x的集合;(2)若1不是不等式的解,0是不等式的解,求k的取值范围。
解:(1)
当k>1时,解集为
当时,解集为
当k<1时,解集为
(2)
所以
小结:当一次项系数为0时,不等式成为两个常数比较大小的形式,与x取值无关。
因此,不等式的解集为R(不等式成立时)或(不等式不成立时)。
2、转化与化归思想
例2.已知a,b,c为正整数,且,求的值。
解:因为不等式两边均为正整数,所以不等式与不等式等价,这个等价不等式又可转化为。
∴
∴
即a=2,b=3,c=6
小结:将等式与不等式对应等价转化,是转化数学问题的常用且非常有效的手段。
3、换元思想
例3.解不等式
解:若令则
∵,且
∴
∴不等式化为
即
∴
解得
从而
即
∴不等式的解集是
4、数形结合思想
例4.设a<0为常数,解不等式。
解:不等式转化为
令函数和
其图象如图所示
由
解得
(舍去)
∴两个函数图象的交点为
由图知,当时,函数的图象位于函数的图象的上方
∴不等式的解集是
小结:在不等式的求解过程中,换元法和图象法是常用的技巧。
通过换元,可将较复杂的不等式化归为较简单的不等式或基本不等式,
通过构造函数,数形结合,则可将不等式的解化归为直观、形象的图象关系。
对含有参数的不等式,运用图象法,还可以使得分类标准更加明晰。
5、方程思想
例5. 已知,求证
分析:结论可以转化为,恰好是一元二次方程有实根的必要条件。
解:由已知可化为,这表明二次方程有实根,从而需要判别式,即成立。
6、构造思想
例6. 解不等式
分析:本题若直接将左边通分采用解高次不等式的思维来做,运算较繁杂。
但注意到,且题中出现,
启示我们构造函数去投石问路。
解:将原不等式化为
令
则不等式等价于
∵在R上为增函数
∴原不等式等价于
解得
7、整体思想
例7.已知,且,求的范围。
解:令
可得
∴
又
可解得
小结:题中,且是四个整体,在解题过程中,整体谋划,不能破坏其固有的整体结构。
四 典型例题精选
▼
题型一 对公式的简单运用
▼
题型二:条件最值问题
【小结】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.
▼
【小结】看好形式上的特点,分子分母同时除以自变量x,或通过其他变形出现基本不等式的可用情况,如积为定值的形式.需要注意的是等号成立的条件,如果不成立,则需转化为对勾函数的知识,运用求导并结合其图像解题.
▼
题型四 多变量综合
▼
题型五 利用基本不等式证明
【小结】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.
▼
题型六 基本不等式应用题
【小结】此题主要考察学生对直角三角形边角关系的应用,第二问还考察学生对两角差的正切公式和基本不等式的熟练运用,第一问属于简单题,第二问属于中等题.
以实际问题为背景的解题步骤:
(1)设变量时一般要把求最大值或最小值的变量定义为函数.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
▼
总结
使用基本不等式求最值时,“一正”“二定”“三相等”三个条件缺一不可.连续使用基本不等式求最值要求每次等号成立的条件一致.基本不等式问题经常以函数为依托,重点考查基本不等式的应用,充分体现了数学学科知识间的内在联系,能较好的考查学生对基本知识的识记能力和灵活运用能力.其解题的关键是对已知函数进行适当的变形,以满足基本不等式应用的条件.
--END--