4个基本不等式的公式高中_高中数学:基本不等式知识点总结

9286fd235d968cfff879c01e0fc64153.gif

一 命题趋势

基本不等式是解决函数值域、最值、不等式证明、参数范围问题的有效工具,在高考中经常考查,有时也会对其单独考查.题目难度为中等偏上.应用时,要注意“拆、拼、凑”等技巧,特别要注意应用条件,只有具备公式应用的三个条件时,才可应用,否则可能会导致结果错误.

二 知识网络

7b9a11640ff19a9334971e7a8c9d89d5.png 8e7307d1db8623f70df86f765fb2fee5.png

三 数学思想在不等式问题中的体现

1、分类讨论思想

例1.已知不等式fb087fbc07465c7fa8058345e5ab1b39.png,(1)求该不等式中x的集合;(2)若1不是不等式的解,0是不等式的解,求k的取值范围。

解:(1)e4d812f323f9f8ee53e6ee25cf35989e.png

当k>1时,解集为

be8d21390450b600c1d108d9af79f759.png

6ee886b7d523280178d670bfda17bd63.png时,解集为0735c5b2c4852f7ed2628b1ce81326d2.png

当k<1时,解集为

e27ab46144f3c06694791e608e7deab6.png

(2)

94cd3f831b4761e7c290d0068460355a.png

所以c5cd4c7993a671c5028130d76abc5331.png

小结:当一次项系数为0时,不等式成为两个常数比较大小的形式,与x取值无关。

因此,不等式的解集为R(不等式成立时)或(不等式不成立时)。

2、转化与化归思想

例2.已知a,b,c为正整数,且91ce95f82694c4f6c796bc71e4220bf8.png,求a773bb3e99a37a0f21f70f6353fa4efb.png的值。

解:因为不等式两边均为正整数,所以不等式与不等式354ad60405dd18eed8a270804b4a93d2.png等价,这个等价不等式又可转化为39d0b99f52dfe9e34e127aacb6cc02f7.png

201e86d515137b0fb822f529d91df7de.png

d7e3a312ba80c19237d9e7cb8cedb044.png

即a=2,b=3,c=6

f8b8b82eec040b879a152f2f88383c88.png

小结:将等式与不等式对应等价转化,是转化数学问题的常用且非常有效的手段。

3、换元思想

例3.解不等式

e7f2a3166df0152332f6c6a4268c3d29.png

解:若令f3cfda096237f0b15739a11b8bd6a329.png69799ff280fd9ca1f1c25cec04e29b5a.png

f46e0d583352a65e10c19cd9fc6470c4.png,且9008921f0958608afe0914df1ac5c215.png

bbe1a85bb8c8f6bde4b53834b866a769.png

∴不等式化为

ec142ce298c95a5ca17b646424149a55.png

acd99c95c0af54faeba6a973b52e017c.png

792497d1d79998faa45a0af902c06454.png

解得1cdac971079bdf4d82fe267dca044a92.png

从而8337d3ce66b964a50e10244dc30a9004.png

be3261a89d252b3f7b0a7014f96e6568.png

∴不等式的解集是bf808e9b70c39af1942883b58df940ff.png

4、数形结合思想

例4.设a<0为常数,解不等式d17827cc996a6d0a2b604fee7714bafc.png

解:不等式转化为83d5d3a894f2a97c34bd56ba7e773927.png

令函数8d25d89408c0ecbfdcf5a8c365e31b0b.png6f1f2f197169515278bf49b146ac2bce.png

其图象如图所示

f521a66408fa9084a5e57bd5d22a4435.png

解得

525c76a92bf59b72ec9c1414b0007525.png

(舍去)

daeb9190b6dee163f7a3331c67e55d7a.png

∴两个函数图象的交点为

b64ca04d83aa6ceddfd31f07a7d4856c.png

由图知,当4eb92683ac77e3c53fd304ee5c32e2b5.png时,函数e48477eb04ca56321f7d1e37d61140fc.png的图象位于函数27286f77cc6e06b66207576cf08868d1.png的图象的上方

∴不等式的解集是

9139f94ba5d00d7b51026f4a08067348.png

小结:在不等式的求解过程中,换元法和图象法是常用的技巧。

通过换元,可将较复杂的不等式化归为较简单的不等式或基本不等式,

通过构造函数,数形结合,则可将不等式的解化归为直观、形象的图象关系。

对含有参数的不等式,运用图象法,还可以使得分类标准更加明晰。

5、方程思想

例5. 已知86779e988457a3df5d94c24b23a5b223.png,求证97d6da5c043d8e29f2b61a2d9df1de4a.png

分析:结论可以转化为94d8c5a62d0de53db3a46932728df513.png,恰好是一元二次方程有实根的必要条件。

解:由已知可化为1970401ffcab20306d1a7468a5298400.png,这表明二次方程6f08bc8a92edaa1a859cc2f09917c6eb.png有实根12d164fcc5f09e3a2a9d74c82d298bb0.png,从而需要判别式8b9562ce97c3b9a0ea94f2bfb7ed755f.png,即03f908badae6a4e93244c1e00160650f.png成立。

6、构造思想

例6. 解不等式

df7bffcb8e38ea37ef7eda9f2ef8cbee.png

分析:本题若直接将左边通分采用解高次不等式的思维来做,运算较繁杂。

但注意到eb646ac6a365767e7e90f4640427e243.png,且题中出现dce5e3159820d1c268ade6487d22b933.png

启示我们构造函数去投石问路。

解:将原不等式化为

b21c872ce443280fa1b182cc00b6408a.png

则不等式等价于

cd948f39a0c0437895bb40e5c0e9f596.png

∵在R上为增函数

∴原不等式等价于

f294d3b49cdc17dac5ab711a131f9338.png

解得de989d4c9eeb7f7ac6c88e881cb88579.png

7、整体思想

例7.已知33c69957f0aef59145758d5ea563a515.png,且,求07d18f75ac5b1dcd9246b05b432e30bf.png的范围。

解:令285d31519efde1822aa0f928bac14519.png

可得

84417de8a9815928223e9f1d8266eefa.png

bf98d509e22f798539a15f081d6a201e.png

可解得cdfdb474d368c23db93ec38fdeadbc4a.png

小结:题中395e1a34eebff0827367efc05ee66ff6.png,且是四个整体,在解题过程中,整体谋划,不能破坏其固有的整体结构。

四 典型例题精选

题型一 对公式的简单运用

e99e38dcb3a26975efc6ebf94777c064.png c94df890400178032c8a97a08f8750aa.png

题型二:条件最值问题

0dd00e1419ad980f91d9f4710980a660.png 57a6c81ac503b5f8af37c7d5460f9846.png 80001886083dadbee8a9a3a65bd1ccf2.png

【小结】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.

8a972d54dd91f7e9ebcce9cb1876637d.png 4c4472ccd9bf2fd88426486db83ab4b0.png 70ca88ab74dfb964ad33f5e86167e8c6.png 1ff07b490069dd13ee9e94f1c5285bb4.png 1ab4dd2353a523ccb1eb54fabc1a40b3.png

【小结】看好形式上的特点,分子分母同时除以自变量x,或通过其他变形出现基本不等式的可用情况,如积为定值的形式.需要注意的是等号成立的条件,如果不成立,则需转化为对勾函数的知识,运用求导并结合其图像解题.

题型四 多变量综合

98d6907b3704af216af083a9db5346d5.png 47a8731859fdd212c977bad112bc18b3.png

题型五 利用基本不等式证明

672003788a86c0bfaf12ef13907aa7bb.png 46a34a62eb060748db3734fd9f726c01.png f6ee93d438c7918b59886d4a0c7bf234.png

【小结】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.

题型六 基本不等式应用题

556c95ba31891b0f7bd57ade65b046d5.png a6a58819eabfa7ae28bd9544d5be5d15.png 5c8f2ec50c06bfdf5c3f5576c9af038d.png

【小结】此题主要考察学生对直角三角形边角关系的应用,第二问还考察学生对两角差的正切公式和基本不等式的熟练运用,第一问属于简单题,第二问属于中等题.

以实际问题为背景的解题步骤:

(1)设变量时一般要把求最大值或最小值的变量定义为函数.

(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.

(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.

总结

使用基本不等式求最值时,“一正”“二定”“三相等”三个条件缺一不可.连续使用基本不等式求最值要求每次等号成立的条件一致.基本不等式问题经常以函数为依托,重点考查基本不等式的应用,充分体现了数学学科知识间的内在联系,能较好的考查学生对基本知识的识记能力和灵活运用能力.其解题的关键是对已知函数进行适当的变形,以满足基本不等式应用的条件.

--END--

5d85cdf6255930ed75128dc91fa33d54.png 45506fb87d5b41618fcda4d64ddcafcb.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值