计算机伺服控制系统综合练习2设计
张贤兵
1.已知:
被控对象是一台具有均匀磁盘负载的DC力矩电机及其伺服系统
框图如下:
其中,电机传递函数为角速度w/u和角度q/u;模拟控制器由K1、K2和K3组成,数字控制器由采样、中央处理器(控制律)和数模转换器组成
给定的参数如下:
电机传递函数Gs=(s)u(s)=kms(Tms 1),km=2 rad/s,Tm=0.1s
转速表的传输系数k=1 v/rad/s
电位计的最大旋转角度为345,输出为5v。
放大器KA=2=K3
采样周期T=0.010s秒
2.设计要求:
1)数模输出120mv,电机启动:uA=1.7v
2)数模输出5v,电机速度=26弧度/秒
3)设计状态反馈增益k,使闭环极点0.9,n20rad/s
4)将设为可测,设计降维观测器(L),将观测器衰减率作为系统的闭环
衰减率的4倍。
5)求出调节器的离散控制律D(z)=U(z)/Y(z)。
6)实施D(z),配置适当的比例因子,并编制相应的程序流程图。
7)仿真验证了调节器的控制效果。假设系统受到干扰,初始测试状态为:
初始速度0=0,初始角度0=10。看一段时间后系统状态是否回到平衡零状态。
(可选)引入指令信号,设计相应的指令跟踪控制器,并仿真给出闭环系统的阶跃响应曲线。
解决方案:
系统传递函数
(1)根据要求,启动电压,即120毫伏数模输出电压,通过后为1.7伏:获得
(2)根据要求,当,由终值定理:
是的,所以:
(3)定义状态变量x1=和x2=,得到连续系统的状态方程
x1x2=010-54.2x1x2 0281.52u
y==10x1x2
用MATLAB求解相应的离散系统状态方程
程序:
A=[0,1;0,-54.2];
b=[0;281.52];
[F,G]=c2d(A,B,0.01)
结果:
F=
1.0000 0.0077
0 0.5816
G=
0.0118
2.1733
因此
x1(k 1)x2(k 1)=10.5816x1(k)x2(k) 0.01182.1733u(k)
yk=10x1(k)x2(k)
系统的可控性矩阵
WC=fgg=0 . 02860 . 01181 . 26402 . 1733,rankWc=2,系统可控
可观测性矩阵
Wo=CCFT=1010.0077,rankWo=2,系统可观测
闭环极点0.9,n20rad/s,期望极点为
s1,2=-NJn1-2=-18j 8.7178
转换到z平面
z1,2=es1,2T=0.8321j0.0727
状态反馈增益k由MATLAB中的阿克曼公式得到
程序:
P=[0.8321 0.0727i,0.8321-0.0727 I];
K=acker(F,G,P)
结果:
K=
1.5403 -0.0464
所以K=[1.5403 -0.0464]
(4)观察极ze=e-1840.01=0.4868
降维观测器的特征方程为
z=DetZi-F22 LF12=z-0.5816 0.0077 L
所以有-0.5816 0.0077升=-0.4868,结果是升=12.3117
(或通过程序
F22=0.5816
F12=0.0077。
L=acker(F22,F12,0.4868)
L=12.3117)。
根据降维观测器方程
x2k 1=[F22-LF12]x2k Lyk 1-[F21-LF11]yk[G2-LG1]u(k)
必须
x2k 1=0.4868 x2k 12.3117[yk 1-yk]2.0280 u(k)
(5)根据状态反馈方程和观测器方程
uk=-1.5403x1k 0.0464x2(k)
x2k 1=0.4868 x2k 12.3117[yk 1-yk]2.0280 u(k)
这两个方程由z变换
Uz=-1.5403Yz 0.0464X2(z)
zX2z=0.4868 x2z 12.3117[Zyz-Yz]2.0280 U(z)
可以通过使用上述两个公式获得
dz=U(z)Y(z)=-0.9690 z-0.1843 z-0.5809
(6)D(z6)D(Z零极点配置)的实现
比例因子配置如下:
考虑电位计的测量范围:最大旋转角度为345,输出为5v,相当于5/(345180)=1/1.2的比例因子。1.2的比例因子应加在数模之前;
稳态增益Dz|z1=1.886,高频增益dz | z 1=0.726,因此可选择比例因子2,而4应与之前的比例因子1.2和1.22=2.4结合使用,因此比例因子2可更改为4/1.2=3.33。
模数转换需要输出5V,因此可以选择5V范围的模数转换模块,数模转换需要输出5V,因此可以选择5V范围的模数转换模块,其增益补偿为1;
配置比例因子后的结构布局。
算法流程图
7)仿真验证了调节器的控制效果。假设系统受到干扰,初始测试状态为:
初始速度0=0,初始角度0=10。看一段时间后系统状态是否回到平衡零状态。
模拟图如下:
模拟结果:(下图的横轴单位是秒)
Y=图:
=图:
从图中可以看出,在没有输入指令信号和只有扰动的情况下,系统在0.4秒内回到平衡零状态,系统稳定性很好。
(可选)引入指令信号,设计相应的指令跟踪控制器,并仿真给出闭环系统的阶跃响应曲线。
A.并且输入信号是单位阶跃信号
(t)
(t)
B.输入信号是单位阶跃(校正增益)
(t)
(t)
C.没有输入信号d(即当X2=0.5时,系统只有一个初始值)
(t)
(t)
d无输入信号d(即系统具有单位阶跃响应,初始值X1=0.5)
(t)
(t)
从以上仿真分析可以看出,系统观测器对系统响应有一定的影响,但一般情况下,稳定系统总能返回到稳态。
展开阅读全文