从混淆矩阵算精度python_python – Tensorflow精度/召回/ F1得分和混淆矩阵

使用TensorFlow创建多层感知器模型,并通过混淆矩阵、精度、召回率和F1分数评估模型性能。在训练过程中,每批数据迭代并监控平均成本。验证集上的精度显示了模型的表现。
摘要由CSDN通过智能技术生成

也许这个例子会对你说:

pred = multilayer_perceptron(x, weights, biases)

correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

with tf.Session() as sess:

init = tf.initialize_all_variables()

sess.run(init)

for epoch in xrange(150):

for i in xrange(total_batch):

train_step.run(feed_dict = {x: train_arrays, y: train_labels})

avg_cost += sess.run(cost, feed_dict={x: train_arrays, y: train_labels})/total_batch

if epoch % display_step == 0:

print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)

#metrics

y_p = tf.argmax(pred, 1)

val_accuracy, y_pred = sess.run([accuracy, y_p], feed_dict={x:test_arrays, y:test_label})

print "validation accuracy:", val_accuracy

y_true = np.argmax(test_label,1)

print "Precision", sk.metrics.precision_score(y_true, y_pred)

print "Recall", sk.metrics.recall_score(y_true, y_pred)

print "f1_score", sk.metrics.f1_score(y_true, y_pred)

print "confusion_matrix"

print sk.metrics.confusion_matrix(y_true, y_pred)

fpr, tpr, tresholds = sk.metrics.roc_curve(y_true, y_pred)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值