1230v3配服务器内存性能提升,E3 1230 V3四核3.7G睿频福利教程及评测

本人是名忠实的A FAN,从05年入手巴顿2500+开始,到开核FX5000、开核220、FX6300一路走来(这是本人在A吧第一帖,FX6300超频教程:http://tieba.baidu.com/p/2975752539),AMD给我的最大感受就是性价比较高、可玩性强,但不可否认E3系列这几年风头正劲,V2历时2年几乎没有掉价,E3党也予以“I5的价格,I7的性能”这样的高评价。可E3 V3面世后却因性能提升有限而没有V2那么受宠。

近日朋友送了一块B85 PRO GAMER(注意,不是所有的B85都能锁4核3.7睿频),趁着5.1活动1399买E3 V3送采融B48,入手一块来看看E3 1230 V3锁定4核心3.7G的睿频后实力对比默认情况下提升有多大。

一、首先进BIOS的AI TWEAKER选项,第一行选择“Per Core”

45d46913706e6de98f24f582ba145261.png

然后手动输入37,也就是固定4核心3.7,F10保存即可,是不是很简单?

f68668edf8f700612ed8ca448d6f04af.png

二、测试平台如下:

c7c7ec38a4af3e9fc8026d78d7766c35.png

再来一张鲁大师的图,注意这已经是锁定4核3.7G的情况下了,室温在20度+,E3 V3没有想象中那么烫嘛,还是采融B48+信越7783硅脂太给力?

09b971b8c836de82f820ef3d884c9cd2.png

装机图来一张,机箱是Fractal Design Define XL,巨大无比,B48显得好小:

a5ba5458c5d4cede5d3ddcdf46c97bfb.png

与刚刚转为二奶机的FX6300来张合影:

86be85f1269ba87ddcf1c70aa30aa449.png

三、测试软件如下:

Cinbench R11.5 64bit [CPU多线程效率及处理能力测试软件]

wPrime [CPU多线程效率及处理能力测试软件]

AIDA64 [整机综合性能测试软件]

Fritz Chess [CPU多线程效率及处理能力测试软件]

3DMark [显卡性能测试软件]

PCMark 7 [整机综合性能测试软件]

四、性能测试结果如下:

30d094874f905126ac4d9d0d4fb6f6a1.png

五、喜闻乐见的鲁大师跑分:

1、默认下的跑分:

3cb4301c297d70ed8a83ad7754c47645.png

2、锁定4核3.7G后的跑分:

62a24e4a090595de08f08d74c27d6920.png

锁定4核3.7G后CPU得分提升幅度达到6400多,显卡、内存、硬盘居然也有小幅度的提升。

另外再来一张锁睿频后WIN7自带的评分图,居然CPU还是短板,不过7.8的得分在WIN7下已经非常高吧。

4d4a9f84b986faa4b058ef0dfb8981b4.png

六、总结:

默认下的E3 1230 V3的睿频为单核3.7G,4核3.5G,而锁定4核3.7G以后主频提升幅度约为(3.7-3.5)/3.5=5.7%,从上图的结果中我们可以看出大部分与CPU性能相关的测试提升幅度在5%~6%,这在预料之中,那么对比无福利的E3 V2,V3锁睿频后的提升大约会有10%。

如果看过I7 4770K默频测试的朋友应该会发现,4核3.7G的E3 V3有很多评测的得分与之相当,这也不难理解,因为默认下I7 4770K的睿频为单核3.9G,4核3.7G,和锁3.7G的E3性能相当也在情理之中。

七、购买建议

预算在千元以下的CPU个人还是强烈建议入手FX43X0、FX63X0或者8320,预算千元以上的还是推荐E3或者带K的I5、I7;已有7系主板搭配I5或E3 V2的同学完全不用升级,7系的福利很多,8系提升非常有限;最近着手装机的朋友不妨考虑一下搭配可以睿频的B85+E3 V3,虽然性价比没有7系高,但有提升、有福利总归是件好事。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值