归一法是一种重要的解题思路,从二年级学了除法之后,在做应用题的过程中,我们经常会运用归一法。这个解题思路会一直伴随着我们的学习。
什么叫归一?其实早在二年级接触了。
比如说,小明买2斤苹果共花了10元钱,苹果多少钱一斤?
图片来自网络
10÷2=5(元)。
又比如,小明用10天读完了一本120页的故事书,问小明平均每天读多少页?
120÷10=12(页)。
像上面这两个例题当中,算出来的5块钱一斤,每一天读12页,都是每一份量。
我们把这种根据已知条件算出每一份量的过程叫“归一法”。
归一问题有三个重要公式。
总数÷份数=一份量
总数÷一份量=份数
一份量×份数=总数
根据所求一份量步骤的繁简,可以分为一次归一与二次归一。
我们举个简单例子。
王师傅5小时可以生产机器零件30个,如果照这样的速度计算,王师傅12小时可生产多少个这样的零件?
图片来自网络,图文无关
分析:这是一道一次归一问题。已知5小时总共可生产30个总量,我们可以算出每一个小时能生产多少个零件。30÷5=6(个),算出了一份量,再乘以份数(12小时),总数就算出来了。
解:30÷5×12=72(个)
答:12小时可以生产72个这样的零件。
再看一道例题。
某服装厂15个工人3天可生产衣服900件。假如每个人的速度一样,照这样计算,20个工人15天可生产多少件衣服?
图片来自网络,图文无关
分析:我们看一下,这道题稍微复杂一点点。先算一下每个工人,3天能生产多少件衣服,再算出他每一天生产多少件衣服?
900÷15=60(件)
60÷3=20(件)
这个算出来就是1个工人1天的生产量。剩下的就是用这个单份量乘以人数与生产时间了。
解:900÷15÷3=20(件)
20×20×15=6000(件)
答:20个工人15天可生产6000件衣服。
像上面这些应用题都给了我们具体的数量,我们能求出每一份量的具体数值,但有一些应用题,无法计算出一份量的具体数值,那我们就需要假设一份量,这个以后我们会在视频中以具体的例题来进行分析。欢迎大家关注。