iphone原彩显示对眼睛好吗_iPhone拍照为什么泛黄??

3f0cee9362d3734760e42ca4c8900605.png

要论9102让人“真香“的产品,苹果9月发布的iPhone 11系列那必须拥有姓名

7e3c5e0563c31bad0a5960c31081da6d.png

更广的超广角、虽然晚了点但十分惊艳的夜间模式,以及所有摄像头甚至前置都能拍摄4K 60帧视频、多摄像头同时工作,当然还有不久前刚更新的神级算法功能——DeepFusion!

但素,最近我们收到了一些留言,大意都是在问为什么刚换的iPhone11拍照黄黄的,不光是11,以前的iPhone也是如此~

b1753aadf35f597e3f12c447f540ff36.png

iPhone拍照为什么发黄?

关于这个问题,我们尝试在网上一搜,会发现的确有很多相同的问题

aa1548843c0150795999f8d801e0f686.gif

7a3be8e748cd4269765ce27c3f9d0a0f.gif

并且除了最新的11,包括iPhone之前很多的机型6、7、8、x…都有类似的情况。

而问题后,大部分的回答是“因为没有关闭原彩显示

51bb9d19141d8678671dc171d323f2dd.png

于是,我们开始了第一个猜想 ~

猜想一:原彩显示

了解iPhone的人都知道,原彩显示的确也是原因之一,具体的原理,可以来看接下来的小测试

首先,为了照顾有的小伙伴可能还不了解什么是原彩显示,小北我先来简单解释一下:

原彩显示(True Tone)技术就是让屏幕根据环境光线自动调整屏幕的色温与显示效果

用苹果官方的解释来说就是:根据环境光线条件自动调整iPhone以在不同环境下保持色彩显示一致。

用一个小实验再来演示说明一下

拿一些白色的物体,比如白纸、咱滴白色键盘和鼠标~ 然后把它们放在不同色温的灯光下,就可以清晰地看到它们外表的颜色发生了改变

f1f9ab22e1a1bc35dc038143a3186365.png
冷光和暖光下白色物体的对比

而原彩显示就是真实模拟了这个现象!

要知道,自然界的阳光也是会有色温变化的,比如傍晚时分就会更低展现出较黄的光线。

而iPhone的原彩显示就是希望我们在看iPhone屏幕时,屏幕内的物体与周边环境的物体色彩表现是接近的。

我们把开启了原彩显示的iPhone放在不同色温下时,它屏幕显示的亮度和白平衡就自动发生了变化

d40194ec6fc27b0cc5b2dd6d6355b093.gif

94b23178d1faaaeb4c042d8f7fb189b4.png
开启原彩显示后,冷光和暖光下iPhone屏幕的对比

okay,现在大家对原彩显示都有些了解了吧~

下面咱就用iPhone在关闭原彩显示的前后分别拍了一张照片,看起来是不是就没那么黄了?

eb3d8101a55e4641f837c668c9af5054.png
左:关闭原彩显示右:开了原彩显示

但是,问题没这么简单...

我们再用某品牌的其他手机在同样的光线条件下拍了一张,分别导出三张照片,大家来看:

be7cf23318337faca44961f1f6d09087.png
iPhone与其他手机拍照对比

嗯?好像看不太出来?咱们放大看!

64ca678be3699e433136d38b5d5be215.png
放大后的对比

两台iPhone拍的照片并没有什么差别啊,反而第三台其他手机相对会白一点点

这个问题很简单,因为原彩显示只作用于你的屏幕,对于最终拍出来的照片其实是不影响的,只要你发到其他设备上,也是正常的照片。

也就是说:这张照片本身并没有你看到的那么黄!

我们可以先简单小结出下面几点:

1 /

如果环境色温偏低(偏暖),开了原彩显示的iPhone拍照后,自己在屏幕上看时的确会偏黄一些;

2 / 原彩显示只影响你的手机显示,照片本身并不受影响,但是为了拍摄时色彩判断更准确,还是建议适时关掉;

3 / 抛开设备显示问题,导出后的照片,iPhone拍照似乎也仍比其他手机稍黄一点点,但也仅限于一点点

另外,还有不少分用户认为是因为「 夜览模式 」的原因。

其实夜览模式与原彩显示同理,都只是作用于你自己的设备,如果导出照片并没有或者关闭后去看照片,成片并不受影响。

同样需要记住,拍摄时务必暂时关掉夜览模式与原彩显示!!!

4513f154975c4e58ce475038121d36ac.gif
关闭夜览后屏幕的变化

那么,影响iPhone拍照轻微泛黄的原因还能是什么呢?我们还有两种猜想

猜想二:与手机拍摄环境中测光有关

我们都知道在拍照时,如果转动手机取景到不同的画面,手机的测光点会改变,然后白平衡、曝光等都会发生改变。

我们在一个画面中加入一张白纸,转动白纸让其在画面中的占比发生改变,然后我们就能看到画面的亮度与色温稍微发生了一点改变。

365c94cb6ea4099c051a7831d1ff5698.gif

同样的方式我们用相机去拍摄,可以发现并没有太大的变化。

6851eaf2a685f7afa877f8745e24fa11.gif

由此我们可以大概地猜测:

相比相机,手机由于各种复杂优化算法介入的更多,画面中不同主体色彩变化等可能会影响白平衡的基准判断。

8ec1974caf6a5e8aa480d7c8f4dec3a9.png

而相机因为更多的依靠光学本身成像,只要环境色温不变,那么即使画面主体色彩等发生变化,白平衡也不会变化太大。

比如向下面这样,通过手机单纯地移近、移远,在这个过程中就会发现键盘的颜色也发生了变化。

4b3014acce3ea9283537d7fafdb69a86.gif

而且不光是iPhone,其他手机也有类似色彩漂移的情况,只是往往最终成像会偏冷一些~

16d9393b1260c27ace47a1cf6eda08d8.gif

这是某其他手机

为了避免大家认出

我们裁去了操作页面

换个更容易理解的方式,这也像Ps中的【白平衡工具】。

当我们选择一张照片,使用【白平衡工具】分别吸取不同位置的色彩时,照片白平衡的平衡点就发生了变化

比如选择了窗帘白色的部分为白平衡的平衡点,整体画面的色彩就变成了黄色;

6338813c8a9b3e890d71d3fa571e3333.gif

反之,再选择黄木色的凳子,整体画面就有些泛冷了。

ef926e8d2ad41a7b979cb94215b0fd3a.gif

猜想三:眼睛“欺骗”了我们

人的眼睛很神奇,神奇在它拥有高达“5.76亿像素”,神奇在它可以帮我们剥去环境色温,“识别物体真正的颜色”

如果从色彩的心理学和生理学角度上分析, 我们人对事物的色彩其实是有记忆性辨识的

简单来说,我们有“常识”~ 但这一点,相机却做不到。

相机不同于人会存在主观意识,它是利用各种算法,将传感器接受光线产生的电信号最终转换成图像,从而还原那一刻拍摄主体的色彩,其中就包括了环境色温的影响。

这一点无论是相机、手机都是如此,所以在相机拍摄中,我们经常会人为修改白平衡设置,拍摄出符合我们认为的白平衡。

29d046bd7567a384b2366fd7a0e432d4.gif

所以,这部分的猜想可以证实一点:

一般相机拍摄的画面其实是接近当时物体真正的颜色(当然,扑街的事也时常发生),因为它一并记录了环境色温的影响;而人会执着于让事物变成自己想象的颜色。

猜想四:iPhone也许根本不Care

也许你会有些疑惑:都说iPhone影像能力很强,那为什么不能解决这个小问题呢?

这个时候让我突然想到之前我们做的 一个测试,用iPhone前置自拍和用其他手机自拍的区别。

其他手机的自拍照看到的是镜像后的自己,而iPhone呈现的是别人看你的视角。

af21f6fc514ac7b8575833ca7d86f5a2.png

当然也包括自拍美颜,iPhone始终会让我们“更加清晰的认识自己” …

这里还有个小插曲,曾经iPhone为了市场呼声也想偷偷尝试轻量的美颜,但是被国外用户一顿吐槽,立马又改了。

于是,我们第四个大胆的猜想就来了: iPhone也许根本不Care

0a2a3229fd80c62588ee65686bc2fc73.png

从近几年来不同版本的iPhone表现来看,iPhone在这个问题上已经优化了很多,只是相比其他手机还是会略显偏暖一些。

所以,如果说iPhone没有能力改变这一点那是不可能的,于是就只有一个可能:

那就是苹果压根不认为这个黄是问题,因为这就是真实环境色温下拍摄主体的色彩呈现呀

而很多安卓手机其实是对色彩进行了专门的优化,根据观察普遍会往“更冷”,也就是更白的方向调整。

这种针对相对更迎合日系韩系等审美风格的个性化审美调教同样在非洲也能看到,比如非洲市场第一的传音手机,它也是我们的自主品牌。

2549d4b39630c04dd249801f282c32d2.png
左侧为传音手机,右侧是其他手机

传音手机针对非洲用户的肤色与喜好进行了特定的色彩与音乐外放优化,价格实惠,席卷非洲大陆

可能也有人听过类似“佳能红、尼康黄、宾得绿、奥巴蓝...”这样的段子。

有人说这是各家厂商的色彩风格,就像“佳能红”的确能让人有一种白里透红的感觉,对于人像肤色的调教的确会更讨一部分人的偏爱。

但也有人觉得这本身是一种相机的缺陷。所以啊,每个人的看法不同,而苹果有他的想法~

那么,究竟如何才能解决拍照发黄的问题?

首先,一般情况下iPhone也并没有那么黄,如果你觉得偏暖想要白皙一些,解决方法也很简单,先说说两种。

第一种,改变拍摄环境色温,比如调节环境灯光。

一般因为灯光的偏黄,会导致了照片拍出来发黄,看起来也不够通透。

这主要是手机相机自动白平衡识别不够准确造成的,环境色温偏低就会导致照片偏黄。

5086f3570a2195427795a6ffc1f09504.gif
灯光色温转变照片的色彩变化

因此,调节到合适的环境色温,由我们来帮忙告诉相机“什么是白”,就能很大程度让照片恢复到视觉上正常的颜色

第二种,通过前期或者后期调整设备白平衡。

有时会有调节不了环境灯光的情况,比如呆在室外拍。

这样的话就可以通过前期调整拍摄设备的白平衡设置,或者后期来调整照片的白平衡

e41ad84b5f854ac2978b6efbac640a07.gif

9c5d3e33899a03e74c4e5f9dc86b533c.png
简单调节白平衡后的对比

尾声:

你更喜欢把真实环境色温影响下的白平衡表现出来,还是更喜欢给你一张白皙的照片,取决于自己。

但对于苹果而言,相比花时间去满足某种单一的审美偏好,也许它更愿意把精力投入到真正的拍摄体验中去

比如,黑科技DeepFusion,一下子让1200万像素达到前所未有的极致画质表现(有多极致,我们后面会出测评);

比如,多颗摄像头同时工作,既可以做到真正的顺滑变焦,还可以实现“一机多位”拍摄;

d3bbe8463034731d2543f9af75faa2c2.png

比如,夜间模式,与无差别提亮画面相比,苹果依然坚持对于暗部氛围的保留,同时尽可能压缩了拍摄等待时间;

f6f86b98d9708ec329c382b334dd1e9a.png

比如,iPhone的智能HDR,依然是目前最好的HDR算法,没有之一,而且拍摄完全不需要片刻的等待;

再比如,LivePhoto提高了拍照时的时间容错性,我们可以通过倒放追溯错过的某个瞬间。

2ec4cadfdac9e526b963302509d305c7.gif

再比如,超宽镜头取景拍摄提高了拍摄的空间容错性,我们可以通过裁剪寻找遗留在取景之外的精彩画面。

当然,还有全部摄像头都可以拍摄4K 60帧视频等等。

2ff4fc41cbfadd046fe3b30a53486078.png

苹果其实一直致力于用户体验的提升,而我们很难觉察。因为我们往往会觉得一切理所应当;因为我们往往需要关注的只是镜头前的画面,以及按下快门时自我的那份期待。

我们认为的黄,在iPhone眼中只是真实的还原,如果想白,App Store中有一堆的修图应用来帮助你解决;而安卓厂商们则明显更懂亚洲用户的审美偏好,主动让画面白一点自然更受欢迎,也免了用户后期的烦恼

那么,你喜欢那种?

okay,今天的内容就到这里,如果你也对iPhone拍照感兴趣,一起来留言里说说你认为的想法把~

就酱~下期见!

dcc066058818fea3e3f558afc4a9bb14.png
数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值