三角形一点到三边距离最小_三角形内有没有一个点到三边距离之和最小 -

本文探讨了三角形中是否存在一个点,使其到三边的距离之和最小。根据三角形是否等腰,结论有所不同。对于不等腰三角形,最大内角的顶点是距离和最小的点;等腰三角形中,底边大于腰时,顶角的顶点是最小值点;底边小于腰时,底边上的任意点距离和相等且最小;等边三角形内任意点距离和相等。证明过程中利用了相似三角形和面积的关系进行逐步放大缩小论证。
摘要由CSDN通过智能技术生成

不论是不是内心, 一个点到三边的距离都是垂线段的长度, 相互之间不能直接比较.

正确的结论是这样的: ①若三角形不等腰,

则平面上到三边距离和最小的点是最大内角的顶点. ②若三角形等腰, 而底边大于腰, 则到三边距离和最小的点是顶角的顶点. ③若三角形等腰, 而底边小于腰,

则底边上(内部和端点)任意一点到三边距离和相等, 并为平面上点到三边距离和的最小值. ④若三角形等边,

则三角形内任意一点到三边距离和相等, 并为平面上点到三边距离和的最小值.

证明不难, 关键是如下特殊情况.

借用下面的图, P是△AMN的一边MN所在直线上任意一点.

PE, PF分别为到另两边的垂线段. 设AM ≥ AN, NK MJ分别是AM, AN边上的高. 则有如下结论: 1) MJ ≥ NK.

2) 当P不在线段MN上, 有PE+PF > NK.

3) 若AM = AN, 且P在线段MN上, 有PE+PF = NK.

4) 若AM > AN, P在线段MN上且不与N重合, 则PE+PF > NK. 证明:

1) ∵AN·MJ/2 = S△AMN = AM·NK/2, ∴AN·MJ = AM·NK. 又∵AM ≥ AN, ∴MJ ≥ NK.

2) 若P在M左侧, 则PE+PF ≥ PE > MJ ≥ NK. 若P在N的右侧, 则PE+PF ≥ PF > NK. 因此PE+PF > NK对直线MN上不在线段MN上的P点均成立. 3) ∵S△AMP = AM·PF/2, S△ANP = AN·PE/2, ∴S△AMN = S△AMP+S△AMP = (AM·PF+AN·PE)/2. 又∵S△AMN = AM·NK/2, ∴AM·NK = AM·PF+AN·PE (*). ∵AM = AN, ∴NK =

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值