python怎么计算图像梯度_opencv python图像梯度实例详解

这篇博客介绍了如何使用OpenCV库在Python中计算图像的一阶和二阶导数,即图像梯度,以进行边缘检测。文章通过Sobel算子和Laplace算子展示了图像的一阶和二阶偏导数,并提供了自定义Laplace算子的示例,帮助理解图像处理中的梯度计算。
摘要由CSDN通过智能技术生成

import cv2 as cv

import numpy as np

图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子)

用于求解图像边缘,一阶的极大值,二阶的零点

一阶偏导在图像中为一阶差分,再变成算子(即权值)与图像像素值乘积相加,二阶同理

def sobel_demo(image):

grad_x = cv.Sobel(image, cv.CV_32F, 1, 0) # 采用Scharr边缘更突出

grad_y = cv.Sobel(image, cv.CV_32F, 0, 1)

gradx = cv.convertScaleAbs(grad_x) # 由于算完的图像有正有负,所以对其取绝对值

grady = cv.convertScaleAbs(grad_y)

计算两个图像的权值和,dst = src1alpha + src2beta + gamma

gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)

cv.imshow("gradx", gradx)

cv.imshow("grady", grady)

cv.imshow("gradient", gradxy)

def laplace_demo(image): # 二阶导数,边缘更细

dst = cv.Laplacian(image,cv.CV_32F)

lpls = cv.convertScaleAbs(dst)

cv.imshow("laplace_demo"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值