@DWC_DIP
码龄5年
关注
提问 私信
  • 博客:173,615
    173,615
    总访问量
  • 60
    原创
  • 2,126,180
    排名
  • 2,364
    粉丝
  • 41
    铁粉

个人简介:每天进步一点点~~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2019-09-17
博客简介:

DIPDWC的博客

查看详细资料
个人成就
  • 获得305次点赞
  • 内容获得109次评论
  • 获得1,324次收藏
  • 代码片获得888次分享
创作历程
  • 39篇
    2021年
  • 21篇
    2020年
成就勋章
TA的专栏
  • 视觉检测
    1篇
  • Python系列
  • 半导体物理
  • 机器学习系列
    19篇
  • 目标检测系列
    2篇
  • Linux系列
    2篇
  • 作业笔记
    4篇
  • PyTorch深度学习入门与实战系列
    6篇
  • Python包安装及环境搭建系列
    3篇
  • PyQt5系列
    1篇
  • Opencv基于Python图像处理算法
    21篇
  • 程序代码报错系列
    1篇
兴趣领域 设置
  • 人工智能
    opencvtensorflowpytorch聚类分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

视觉表面缺陷检测技术概述

这里写自定义目录标题1. 什么是机器视觉2. 视觉检测系统2.1 视觉检测系统的特点2.2 视觉检测系统的组成3. 视觉表面缺陷检测面临问题及发展趋势3.1 视觉表面缺陷检测面临问题3.2 视觉表面缺陷检测发展趋势4. 视觉检测与智能制造4.1 视觉缺陷检测系统原理4.2 常见缺陷检测类型参考资料1. 什么是机器视觉  机器视觉作为人工智能的一个快速发展的分支,简言之就是利用机器代替人眼来做测量和判断,广泛应用于各个行业。在3C行业等大批量工业生产过程中,利用人工视觉检查产品存在质量效率低、精度不高等问
原创
发布博客 2021.10.23 ·
3777 阅读 ·
3 点赞 ·
0 评论 ·
39 收藏

Linux常用基本操作命令详解(二)

Linux实用命令1. 前言2. 常用Linux文件操作命令2.1 文本文件编辑命令1. 前言通过前面Linux常用基本操作命令详解(一)的学习,基本可以掌握切换工作目录及对文件的管理方法。Linux 系统中“一切都是文件”,而对服务程序进行配置自然也就是编辑程序的配置文件。本节将继续介绍用于文件操作命令。2. 常用Linux文件操作命令2.1 文本文件编辑命令1. cat 命令cat 命令用于查看纯文本文件(内容较少的),格式为“cat [选项] [文件]”。如果在查看文本内容时还想顺便显示
原创
发布博客 2021.07.25 ·
688 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

Linux常用基本操作命令详解(一)

Linux实用命令文件目录指令文件目录指令man获取帮助信息基本语法:man[命令或配置文件](功能描述:获得信息帮助)案例:查看ls命令的帮助信息 man ls在Linux下,隐藏文件是以.开头,-a可显示全部隐藏文件,选项可以组合使用,如ls -al,ls -al/root...
原创
发布博客 2021.07.24 ·
888 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

目标检测—R-CNN、Fast R-CNN和Faster R-CNN

目标检测参考文献本讲进入到深度到深度学习的应用方面,前面提到的卷积神经网络被用作图像分类识别,即输入一张图像,输出它的类别。在实际应用中,我们更有可能遇到的是是如下几种将检测、分割与识别综合处理的情形。第一种情形,单目标检测中的目标定位与识别,即图像中有一个目标,我们需要检测出它的位置,同时识别出它的类别。第二种情形,多目标检测中的目标定位与识别,即图像中有多个目标,我们需要分别检测出它的位置,同时对每个目标都要进行识别。第三种情形,语义分割,我们不仅要检测和识别出图像中的各种目标,还要确定每个目
原创
发布博客 2021.07.10 ·
1432 阅读 ·
1 点赞 ·
3 评论 ·
8 收藏

Darknet中cfg文件参数详解

YOLO中cfg文件参数详解1. cfg文件参数解释2. 参考文献1. cfg文件参数解释以YOLO v3为例详细解释cfg文件各参数的含义:[net] #[xxx]开始的行表示网络的一层,其后的内容为该层的参数配置,[net]为特殊的层,配置整个网络# Testing #测试模式 #初始batch参数要分为两类,分别为训练集和测试集,不同模式相应放开参数batch=1subdivisions=1# Training #训练模式 每次前向图片的数目=batch/subdivisions#
原创
发布博客 2021.07.03 ·
911 阅读 ·
1 点赞 ·
2 评论 ·
5 收藏

目标检测——YOLO系列(一网打尽)

YOLO系列算法1. 基本概念2. 目标检测算法分类及流程2.1 算法分类2.2 基本流程2.3 Two-stage与One-stage基本流程比较3. YOLO系列目标检测模型3.1 YOLO v13.1.1 基本思想3.1.2 网络结构3.1.3 训练过程3.1.4 优缺点参考文献1. 基本概念目标检测(Object Detection)是在图像中对一类或多类感兴趣的目标进行查找和分类,确定它们的类别和位置。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机
原创
发布博客 2021.06.27 ·
6474 阅读 ·
20 点赞 ·
3 评论 ·
209 收藏

人脸识别介绍

人脸识别介绍在这一讲中,我们将以人脸识别为具体应用,讲解如何用深度神经网络构建一个实用的人脸识别系统。首先,回顾人脸识别邻域近年来的发展,在2013年AlexNet提出之后,FaceBook迅速跟进,在2014年构建了一个DeepFace的卷积神经网络。训练数据库包含4000人、400万张人脸,该模型在LFW数据集上取得了97.25%的平均精度,同时在Youtube数据集上取得了当前最好的结果,比之前的第一整整高出了12.7%。2015年,香港中文大学唐晓鸥老师实验室研发了DeepID卷积神经网络,
原创
发布博客 2021.06.19 ·
1000 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

你对SIFT算法了解多少—原理详解与演示

这一讲将讲解图像特征匹配中的SIFT算法,全称为尺度不变性特征匹配算法(Scale Invariant Feture Transform),它是计算机视觉中最常应用的特征匹配算法之一。由于该算法是在2004年进行完善,后续在其基础上有很多改进的算法,目前用到的特征匹配算法可能不是SIFT算法本身而是改进后的算法,但是无论用什么改进的算法,其基本思想是不变的,只不过是在计算性能和效率上有所提升。下面从原理上对该算法进行...
原创
发布博客 2021.06.11 ·
4454 阅读 ·
8 点赞 ·
0 评论 ·
52 收藏

OpenCV基于Python霍夫圆检测—基于梯度的霍夫圆检测

基于梯度的霍夫圆检测1. 回顾与目标2. 基于梯度的霍夫圆检测2.1 问题分析2.2 基于梯度的霍夫圆检测步骤3. 基于梯度的霍夫圆检测函数HoughCircles3.1 函数HoughCircles3.2 代码演示参考资料1. 回顾与目标上一讲标准的霍夫变换对于曲线检测是一项强有力的技术,但是随着曲线参数数目的增加,造成计数器的数据结构越来越复杂,如直线检测的计数器是二维的,圆检测的计数器是三维的,这需要大量的存储空间和巨大的计算量,因此通常采用其他方法进行改进,如同概率直线检测对标准霍夫直线检测的改
原创
发布博客 2021.06.03 ·
3710 阅读 ·
14 点赞 ·
5 评论 ·
84 收藏

OpenCV基于Python霍夫圆检测—标准霍夫圆检测

标准霍夫圆检测1972年,R. D. Duda和P. E. Hart1提出了直线的检测方法,而且还推广到了霍夫圆的检测方法,通常称为标准的霍夫圆检测。已知圆的圆心坐标为(a,b)(a, b)(a,b),半径为rrr,则圆在xoyxoyxoy平面内的方程可表示为:(x−a)2+(y−b)2=r2(x-a)^2+(y-b)^2=r^2(x−a)2+(y−b)2=r2。那么反过来考虑一个简单的问题:已知xoyxoyxoy平面内的点(x1,y1)、(x2,y2)、(x3,y3)、...(x_1, y_1)、(x
原创
发布博客 2021.06.03 ·
1179 阅读 ·
2 点赞 ·
2 评论 ·
7 收藏

深度学习—近年来流行的卷积神经网络(一)

近年来流行的卷积神经网络前面几讲,我们以LeNet和AlexNet为例,详细讲解了卷积神经网络的结构。从2012年AlexNet在ImageNet数据集上获得远超传统算法识别率以来,学术界在卷积神经网络方面进行了一系列改进型研究工作,这一讲我们将描述这些重要的改进。下图是截至2015年卷积神经网络的发展图。图1 各种不同网络在ImageNet上的结果2012年AlexNet将ImageNet数据集的Top5错误率降低到16.4%。2014年VGGNet和GooleNet分别将Top5错误率降低到
原创
发布博客 2021.06.01 ·
4103 阅读 ·
15 点赞 ·
13 评论 ·
57 收藏

深度学习编程工具Tensorflow—实现LeNet-5

Tensorflow框架实现LeNet-51. 目标与背景2. 基于LeNet的TensorFlow实现2.1 程序代码分析2.2 实验演示3. 结尾参考资料1. 目标与背景在这一讲中,我们将讲解深度学习的编程工具Tensorflow的基础使用规则。最初的深度学习编程工具主要由研究人员义务开发,免费发布供大家使用,如Caffe,在2014年,由美国加州大学伯克利分校贾扬清开发。随着深度学习技术的逐渐普及,开发深度学习的编程工具变得有利可图。因此,近年来编程工具的主要开发者变成了公司。图1 贾扬清下
原创
发布博客 2021.05.31 ·
1279 阅读 ·
3 点赞 ·
3 评论 ·
15 收藏

深度学习编程工具Pytorch—实现LeNet-5

Pytorch框架1.背景与目标2. Pytorch实现LeNet-52.1 主函数main()2.2 训练函数train()与测试函数test()3. 结尾参考资料1.背景与目标在这一讲中,我们将讲解近年来流行的深度学习编程工具Pytorch的使用方法。最近几年Pytorch工具使用份额日益增长,目前已经成为学术界研究深度学习的第一编程工具。这一讲我们仍然以LeNet为例来讲解Pytorch这一编程工具。2. Pytorch实现LeNet-52.1 主函数main()首先,我们打开main.py
原创
发布博客 2021.05.30 ·
647 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习—卷积神经网络AlexNet

卷积神经网络AlexNet1. AlexNet的历史2. AlexNet网络结构简要分析3. AlexNet的改进4. 结尾参考资料在这一讲中,我们将详细讲解深度学习发展中的重要里程碑AlexNet。1. AlexNet的历史2012年Geoffrey Hintton的学生ALEX Krizhevsky构建了一个包含65万多个神经元,待估计参数超过6000万的大规模的卷积神经网络。他以自己的名字命名了这个神经网络叫作AlexNet,用以解决ImageNet数据集1000类的分类问题。在2012年,Im
原创
发布博客 2021.05.28 ·
1424 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

深度学习—卷积神经网络LeNet

卷积神经网络LeNet1. CNN的历史2. 卷积神经网络LeNet2.1 经典的LeNet结构2.2 卷积过程3. LeNet-5网络结构分析3.1 卷积核参数更新3.2 LeNet网络逐层分析3.3 LeNet中待估计参数4. 结尾在这一讲中,我们将讲解目前深度学习领域最常用的一个模型—卷积神经网络(Convolutional Neural Network, CNN)。1. CNN的历史CNN的历史可以追溯到1980年Fukushima发明的神经认知机(neocognitron),这是第一个通过自
原创
发布博客 2021.05.25 ·
3752 阅读 ·
20 点赞 ·
16 评论 ·
63 收藏

深度学习—自编码器

自编码器1. 自编码器模型2. 自编码器思想3. 结尾参考文献1. 自编码器模型这一讲我们将讲解2006年Geoffrey Hintton在Science上发表的文章Reducing the dimensionality of data with neural networks自编码器(Auto-Encoder)模型,基于这个模型,它部分地解决了神经网络参数初始化的问题。2. 自编码器思想自编码器采用的是分层初始化的思想。例如我们想要训练图中NNN层的神经网络,步骤如下:步骤一:先训练图中下
原创
发布博客 2021.05.24 ·
2499 阅读 ·
3 点赞 ·
1 评论 ·
18 收藏

深度学习—历史发展

深度学习的历史发展1. 导语2. 人工神经网络发展历程2.1 人工神经网络的劣势2.2 人工神经网络三剑客3. 深度学习发展中的革新事件1. 导语从这一讲开始,我们将进入目前最火热的人工智能领域—深度学习(Deep Learning)。我们前面讲到,从上个世纪80年代开始,多层神经网络被提出,它较好地解决了机器学习中的一些实际问题,但是到了上个世纪90年代,人工神经网络的研究却突然进入了沉寂。这是因为上个世纪90年代中期,以支持向量机为代表的一系列机器学习模型的提出,对人工神经网络这样的算法造成了强烈的
原创
发布博客 2021.05.24 ·
2562 阅读 ·
3 点赞 ·
0 评论 ·
12 收藏

人工神经网络—参数设置中更深入的问题

参数设置问题1. 回顾1. 回顾在前面的章节中,我们讲过神经网络的训练是一门艺术。我们这一讲将从解决实际问题经验的角度出发,给出训练神经网络的一些建议,同时探讨神经网络参数设置中更深入的问题,希望通过本章内容的讲解,加深对训练神经网络的感性认识,提高利用神经网络解决实际问题的能力。首先是三个训练神经网络的建议,这几个建议应该是学术界一致公认的。(1)一般情况下,在训练集上的目标函数的平均值(cost) 会随着训练的深入而不断减小,如果这个指标有增大的情况,请停下来。有两种情况:采用的模型不够复
原创
发布博客 2021.05.22 ·
551 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

人工神经网络—后向传播算法应用中的问题

后向传播算法应用中的问题1. 回顾2. 对非线性函数的改进2.1 Sigmoid函数2.2 tanh函数3. 基于SoftMax函数和交叉熵的目标函数4. 随机梯度下降法5. 结尾1. 回顾在上两讲中,我们讲解了如何利用后向传播算法训练多层神经网络,我们总结出了后向传播算法的基本框架,包含以下步骤:(1)对神经网络每一层的各个神经元,随机选取相应的 w,bw,bw,b 的值。(2)前向计算,对于输入的训练数据,计算并保留每一层的输出值,直到计算出最后一层的输出 yyy 为止。(3)设置目标函数EE
原创
发布博客 2021.05.19 ·
461 阅读 ·
1 点赞 ·
7 评论 ·
3 收藏

人工神经网络—反向传播算法(二)

反向传播算法(二)1. 回顾2. 反向传播算法的一般情形2.1 反向传播算法的推导2.2 一般情形的后向传播算法流程3. 结尾1. 回顾在上一讲中,我们基于一个简单的神经网络,讲解了如何用后向传播算法更新神经网络的参数,完成神经网络的训练。这一讲我们将后向传播算法推广到一般的神经网络中,即我们不限制神经网络的层数以及每一层的神经元的个数来推导后向传播算法。2. 反向传播算法的一般情形如下图1所示,假设神经网络有lll层,我们不限制每一层神经元的个数,那么神经元的图可以用更简单的矩阵来表示。图1
原创
发布博客 2021.05.18 ·
424 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多