在做对比实验中,除了对整体形状的对比,在很多情况下都需要对某一局部的数据进行放大,来观察更加精细的对比效果。
工具
Python的Matplotlib库函数
步骤
1、导入依赖库
import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.axes_grid1.inset_locator import inset_axesfrom matplotlib.patches import ConnectionPatch
2、准备数据
reward_demaddpg[]
储存的是执行demaddpg算法后所获得的300个reward结果。
因此横坐标设置为:
MAX_EPISODES = 300x_axis_data = []for l in range(MAX_EPISODES): x_axis_data.append(l)
5个对比实验结果存在5个数组中,分别表示demaddpg算法中设置的不同的学习率:
3、绘主图
fig, ax = plt.subplots(1, 1)ax.plot(x_axis_data, reward_demaddpg5, color='#4169E1', alpha=0.8, label='$1*10^{-5}$')ax.plot(x_axis_data, reward_demaddpg10, color='#848484', alpha=0.8, label='$5*10^{-6}$')ax.plot(x_axis_data, reward_demaddpg15, color='#FF774A', alpha=0.8, label='$1*10^{-6}$&