柱状图用于反映数值变量的集中趋势,用误差线估计变量的差值统计。理解误差线有助于我们准确的获取柱状图反映的信息,因此打算先介绍一下误差线方面的内容,然后介绍一下利用seaborn库绘制柱状图。
1.误差线的理解
误差线源于统计学,表示数据误差(或不确定性)范围,以更准确的方式呈现数据。当label上有一组采样数据时,一般将这组数据的平均值作为该label上标注的值,而用误差线表示该均值可能的误差范围。误差线可以用标准差(standard deviation,SD)、标准误(standard error,SE)和置信区间表示,使用时可选用任意一种表示方法并作相应说明即可。当label上值有一个数据时,则不需要标注误差线。
- 标准差
在实际中,总体的标准差总是未知的,我们一般用样本标准差来估计总体标准差,样本标准差定义为
其中为样本均值,则误差线的范围为()
- 标准误
当多次进行重复采样时,会得到多组数据,每组数据都有一个平均值,这些平均值间是有差异的,尽管在每组数据量较大时,这个差异会比较小,标准误表示的就是平均值的误差范围。可以对标准误做以下估计