c++一个数的n次方怎么表示_如何证明非立方数的立方根必是无理数|无理数π与e和你的纠结系列2.1...

3bc433c282993c8f0f1f0e1072b3d304.png

弘毅: 如果正整数n不是立方数,那么n的立方根

equation?tex=%5Csqrt%5B3%5D%7Bn%7D 是无理数吗?怎么证明?

我:你的想法是对的。


1. 根号2是无理数的证明

首先,我们看一个最简单的无理数的证明。

命题1

equation?tex=%5Csqrt%7B2%7D 是无理数。

证明:反证法。

假设

equation?tex=%5Csqrt%7B2%7D 不是无理数,即
equation?tex=%5Csqrt%7B2%7D 是有理数。

根据有理数的定义,

equation?tex=%E5%AD%98%E5%9C%A8m%2Cn%5Cin%5Cmathbb%7BN%7D%5E%2B%2C+%E4%BD%BF%E5%BE%97%5Csqrt%7B2%7D%3D%5Cfrac%7Bm%7D%7Bn%7D%2C+gcd%28m%2Cn%29%3D1.

其中m,n互素,即

equation?tex=+gcd%28m%2Cn%29%3D1 的要求是自然的,因为
分子分母约掉公共的因子后就互素了。

将上述等式两边平方,得到

equation?tex=2n%5E2%3Dm%5E2.

由于2是素数,得到m是2的倍数,即我们可假设

equation?tex=m%3D2k%2Ck%5Cin%5Cmathbb%7BN%7D%5E%2B.

将它代入原先等式,又得到

equation?tex=2n%5E2%3Dm%5E2%3D4k%5E2%2C
equation?tex=n%5E2%3D2k%5E2.

同样的道理,得到n也是2的倍数。

由于m,n都是2的倍数,因此其公因子至少有2,这与

equation?tex=+gcd%28m%2Cn%29%3D1 矛盾。QED.

2. 常见的无理数证明方法

其实,常见的证明一个实数是无理数的方法主要就是两个:

一是类似上述
equation?tex=%5Csqrt%7B2%7D 这种代数数的无理性的证明过程的代数或者数论式方法;

二是类似π和e这种超越数的无理性的证明过程的分析式方法,

详见专栏文章:

温欣提市:无理数π与e和你的纠结系列2|如何证明 e 是无理数?​zhuanlan.zhihu.com
49584882ec219b8d357ef85006f86abb.png
能表示成整系数多项式方程的根的实数被称为 代数数
不是代数数的实数被称为 超越数

3. 非立方数的立方根必是无理数的证明

命题2 若正整数n不是立方数,则

equation?tex=%5Csqrt%5B3%5D%7Bn%7D 是无理数。

由于

equation?tex=%5Csqrt%5B3%5D%7Bn%7D 也是代数数,因此我们有理由相信,其证明方法跟
equation?tex=%5Csqrt%7B2%7D 是相似的。

证明:反证法。

令正整数n的素数乘积展示式如下:

equation?tex=n%3Dp_1%5E%7Ba_1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7D%2C+p_i%2Ca_i%5Cin%5Cmathbb%7BN%7D%5E%2B.%5C%5C

n不是立方数的意思就是,上式中的指数

equation?tex=a_i 存在一个不是3的倍数。

不妨假设

equation?tex=a_1 不是3的倍.

step1 将问题归结为指数

equation?tex=a_1%3C3 的情况

由于指数

equation?tex=a_1 不是3的倍数,不妨令
equation?tex=a_1%3D3b%2B1%2Cb%5Cin%5Cmathbb%7BN%7D%5E%2B.

equation?tex=%5Csqrt%5B3%5D%7Bn%7D%3D%5Csqrt%5B3%5D%7Bp_1%5E%7Ba_1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7D%7D%3Dp_1%5Eb%5Csqrt%5B3%5D%7Bp_1%5E%7B1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7D%7D.

引理1:非0有理数x和无理数y的乘积xy必为无理数。

这个引理是很简单的。因为有理数的加减乘除是封闭的

若xy是有理数,则

equation?tex=y%3Dxy%5Ccdot%5Cfrac%7B1%7D%7Bx%7D 是两个有理数的乘积必为有理数,矛盾。

回到正题,因此我们只需要证明

equation?tex=%5Csqrt%5B3%5D%7Bp_1%5E%7B1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7D%7D 是无理数即可。

step2 反证法的主体部分

假设

equation?tex=%5Csqrt%5B3%5D%7Bn%7D%3D%5Csqrt%5B3%5D%7Bp_1%5E%7Ba_1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7D%7D%28a_1%3C3%29 不是无理数,即
equation?tex=%5Csqrt%5B3%5D%7Bn%7D 是有理数。

根据有理数的定义,

equation?tex=%E5%AD%98%E5%9C%A8u%2Cv%5Cin%5Cmathbb%7BN%7D%5E%2B%2C+%E4%BD%BF%E5%BE%97%5Csqrt%5B3%5D%7Bn%7D%3D%5Cfrac%7Bu%7D%7Bv%7D%2C+gcd%28u%2Cv%29%3D1.

其中u,v互素,即

equation?tex=+gcd%28u%2Cv%29%3D1 的要求是自然的,因为
分子分母约掉公共的因子后就互素了。

将上述等式三次方,得到

equation?tex=nv%5E3%3Du%5E3, 即

equation?tex=p_1%5E%7Ba_1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7Dv%5E3%3Du%5E3.%5C%5C

由于

equation?tex=p_1 是素数,得到u是
equation?tex=p_1的倍数,即我们可假设
equation?tex=u%3Dp_1l%2Cl%5Cin%5Cmathbb%7BN%7D%5E%2B.

将它代入原先等式,又得到

equation?tex=p_1%5E%7Ba_1%7Dp_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7Dv%5E3%3Du%5E3%3Dp_1%5E3l%5E3.

由于

equation?tex=a_1%3C3%2C 我们有

equation?tex=p_2%5E%7Ba_2%7D...p_k%5E%7Ba_k%7Dv%5E3%3Dp_1%5E%7B3-a_1%7Dl%5E3.%5C%5C

由于

equation?tex=p_i 是不同的素数,因此得到v也是
equation?tex=p_1 的倍数。

由于u,v都是

equation?tex=p_1 的倍数,因此其公因子至少有
equation?tex=p_1,这与
equation?tex=+gcd%28u%2Cv%29%3D1 矛盾。QED.

总结

其实有一个更加广泛的事实。

利用跟这个证明完全一样的方法可以证明:

一般地,非n次方数的开n次方必是无理数

虽然上述证明方法很平凡,但是没想到威力这么大吧?

平凡,踏实是一个可靠的求知之心!

d54176a98d3e58025de6bb4c8885402c.png

多谢关注和点赞,支持原创高质量文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值