python中折半查找算法展示_折半查找算法(Python版)

本文介绍了二分查找(折半查找)的基本原理和实现方法,这是一种在有序数组中高效查找元素的算法,时间复杂度为O(log2n)。首先对列表进行排序,然后通过不断缩小查找范围来定位目标值。当找到目标值时返回其位置,否则返回-1。文章提供了一个简单的Python代码示例来演示二分查找的过程。
摘要由CSDN通过智能技术生成

介绍

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

前提

必须待查找的序列有序

时间复杂度

O(log2n)

原理

1)确定该期间的中间位置K

2)将查找的值t与array[k]比较,若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。

3)区域确定过程:

若array[k]>t,由于数组有序,所以array[k,k+1,……,high]>t;故新的区间为array[low, ..., K-1];

反之,若array[k]

#!/usr/bin/env python

# -*- coding: utf-8 -*-

# @Date : 2020-07-10

# @Author : 流柯

# @desc : 二分查找算法,python版

def serach(array, t):

array.sort() #排序,保证列表是有序的

low = 0

height = len(array) - 1

while low <= height:

k = (low + height) // 2

if array[k] < t:

low = k + 1

elif array[k] > t:

height = k - 1

else:

return k #找到后返回位置

return -1 #找不到返回-1

array = [1, 3, 5, 7, 9, 6, 8, 0]

print(serach(array, 5))

End

原文:https://www.cnblogs.com/linmo/p/13280290.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值