第三章A律13折线与μ律15折线的理论简介
3.1 A律压扩
其特性可表示为:
其中x表示为归一化的压缩器输入电压;y为归一化的压缩器输出电压,A为压扩参数,表示压缩程度。
很明显,小信号时为线性特性,大信号时近似为对数特性。这种压扩特性常把压缩、量化和编码合为一体。A律可用13段折线逼近(相当于A=87.6),便于用数字电路实现。
13段折线的压缩特性如下图。过程为:
第一步:把x(x>0 部分)划分为不均匀的8段。第一分点取在V/2处,然后每段都是剩下部分的1/2。依次取第八段为V~V/2,第七段为V/2~V/4;第一段为V/128~0。
第二步:把每段均匀划分为16等份,每一份表示一个量化级,显然8段共16x8=128=
个量化级,需要二进制7位编码表示。可以看出每个量化级是不均匀的。在小信号的量化台
阶很小,使小信号时量化噪声减小。如果按均匀量化计算,以最小台阶为单位,最大信号需用L=128X16=2048=个量化级表示,既需要11位编码。这样非均匀编码使小信号量化台阶缩小了16倍,相当于小信号信噪比改善了20dB。
第三步:把y轴均匀划分为8段,每段均匀分为16分。这样y也分为128个量化级,与
x轴的128个量化级对应。因此,压扩特性各段的斜率是不同的。第一段斜率
其他段为:
以上分段为x取正值时的情况。而x取负值时,压扩特性与x取正值成奇对称。在正8段和负8段中,正1,2段和负1,2段斜率相同,合为一段。所以原来的16段折线变为13段折线。
其中,第二式是A律的主要表达式,但它当x=0时,y→-∞,这样不满足对压缩特性的要求,所以当x很小时应对它加以修正。A为压扩参数,A=1时无压缩,A值越大压缩效果越明显。国际标准中取A=87.6,A律压缩特性如图(b)所示。