rapter求n的阶乘流程图_向量知识点,向量公式,向量乘法,向量与投影专题,向量的模怎么求...

第二讲 向量运算与复数运算、算法、推理与证明

53de7a10eda3b53706186248dc07d749.png

高考考点

考点解读

平面向量的

运算及运用

1.以平面图形为载体,借助向量考查数量关系与位置关系、向量的线性运算及几何意义

2.以平面向量基本定理为出发点,与向量的坐标运算、数量积交汇命题

3.直接利用数量积运算公式进行运算,求向量的夹角、模或判断向量的垂直关系

复数的概念及运算

1.复数的概念、纯虚数、复数相等、共轭复数等

2.复数的几何意义及四则运算,重点考查复数的乘除运算

程序框图

1.主要考查程序框图的应用及基本算法语句,尤其是含循环结构的程序框图

2.与分段函数的求值、数列求和或求积、统计等有规律的重复计算问题放在一起综合考查

合情推理

1.主要考查合情推理和演绎推理,重点考查归纳推理和类比推理

2.以数表、数阵、图形等为背景与数列、周期性等数学知识相结合考查归纳推理

备考策略

本部分内容在备考时应注意以下几个方面:

(1)加强对向量加法、减法的平行四边形法则与三角形法则的理解、掌握两向量共线与垂直的条件,熟记平面向量的相关公式,掌握求模、夹角的方法.

(2)掌握复数的基本概念及运算法则,在备考时注意将复数化为代数形式再进行求解,同时注意“分母实数化”的运用.

(3)关注程序框图和基本算法语句的应用与判别,尤其是含循环结构的程序框图要高度重视.

(4)掌握各种推理的特点和推理过程,同时要区分不同的推理形式,对归纳推理要做到归纳到位、准确;对类比推理要找到事物的相同点,做到类比合,对演绎推理要做到过程严密.

预测2019年命题热点为:

(1)利用平面向理的基本运算解决数量积、夹角、模或垂直、共线等问题,与三角函数、解析几何交汇命题.

(2)单独考查复数的四则运算,与复数的相关概念、复数的几何意义等相互交汇考查.

(3)程序框图主要是以循环结构为主的计算、输出、程序框图的补全,与函数求值、方程求解、不等式求解数列求和、统计量的计算等交汇在一起命题.

(4)推理问题考查归纳推理和类比推理,主要与数列、立体几何、解析几何等结合在一起命题.

2c3804b793333b4129f417b11acd888e.png

知识整合

1.重要公式

(1)两个非零向量平行、垂直的充要条件

a=(x1y1),b=(x2y2),则

abaλb(b≠0,λR)⇔x1y2x2y1=0.

aba·b=0⇔x1x2y1y2=0.

(2)复数的四则运算法则

(abi)±(cdi)=(a±c)+(b±d)i(abcdR).

(abi)(cdi)=(acbd)+(bcad)i(abcdR).

(abi)÷(cdi)=c2+d2ac+bd+c2+d2bc-adi(abcdRcdi≠0).

2.重要性质及结论

(1)若ab不共线,且λaμb=0,则λμ=0.

(2)已知→OA=λ→OB+μ→OC(λμ为常数),则ABC三点共线的充要条件是λμ=1..

(3)平面向量的三个性质

①若a=(xy),则|a|==.

②若A(x1y1),B(x2y2),则|→AB|=.

③设θab(a≠0,b≠0)的夹角,且a=(x1y1),b=(x2y2),则cosθ=|a||b|a·b=22.

(4)复数运算中常用的结论:

①(1±i)2=±2i;②1-i1+i=i;③1+i1-i=-i;④-bai=i(abi);⑤i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,其中nN*

3.推理与证明

(1)归纳推理的思维过程

实验、观察→概况、推广→猜测一般结论

(2)类比推理的思维过程

实验、观察→联想、类推→猜测新的结论

(3)(理)数学归纳法证题的步骤

①(归纳奠基)证明当n取第一个值nn0(n0N*)时,命题成立;

②(归纳递推)假设nk(kn0kN*)时命题成立,证明当nk+1时,命题也成立.

只要完成了这两个步骤,就可以断定命题对于任何nn0的正整数都成立.

Y易错警示i cuo jing shi 

1.忽略复数的定义:

在解决与复数概念有关的问题时,在运用复数的概念时忽略某一条件而致误.

2.不能准确把握循环次数

解答循环结构的程序框图(流程图)问题,要注意循环次数,防止多一次或少一次的错误.

3.忽略特殊情况:两个向量夹角为锐角与向量的数量积大于0不等价;两个向量夹角为钝角与向量的数量积小于0不等价.

08be2399ce7c00ffc1b620a939f014fa.png

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页