前言
刚刚我们用python实现了形态学建筑物指数MBI提取建筑物:
馨意:python实现形态学建筑物指数MBI提取建筑物zhuanlan.zhihu.com
MBI 算法利用建筑物的亮度、对比度、方向等特征来提取建筑物,提取效果较好,但其结果的同质区域内部和外部均存在大量噪声点。针对该问题,可以将其结合超像素分割算法进行改善[1]。
原理
先利用SLIC 算法对遥感影像进行分割生成具有同质像素的超像素区域,然后利用MBI 算法对遥感影像进行处理生成形态学建筑物指数灰度图,再计算每个超像素区域内的建筑物指数均值,当均值超过某一指定阈值时即可认为该区域是建筑物。
实验数据
与MBI单独算法数据一致。

本文介绍了使用Python实现的形态学建筑物指数MBI与超像素分割(SLIC算法)相结合的方法,用于改善遥感影像中建筑物的提取效果。通过SLIC分割生成超像素区域,再应用MBI算法处理,当超像素区域的建筑物指数均值超过阈值时,识别为建筑物。实验表明,引入超像素后,建筑物提取的准确性得到显著提升。
最低0.47元/天 解锁文章
4466

被折叠的 条评论
为什么被折叠?



