超像素分割后的提取_python实现形态学建筑物指数MBI与面向对象结合提取建筑物...

本文介绍了使用Python实现的形态学建筑物指数MBI与超像素分割(SLIC算法)相结合的方法,用于改善遥感影像中建筑物的提取效果。通过SLIC分割生成超像素区域,再应用MBI算法处理,当超像素区域的建筑物指数均值超过阈值时,识别为建筑物。实验表明,引入超像素后,建筑物提取的准确性得到显著提升。

e16705612a3c27a51d4b684b14ccf5cc.png

前言

刚刚我们用python实现了形态学建筑物指数MBI提取建筑物:

馨意:python实现形态学建筑物指数MBI提取建筑物​zhuanlan.zhihu.com
16ab244671bf0540d66e9ec725d16270.png

MBI 算法利用建筑物的亮度、对比度、方向等特征来提取建筑物,提取效果较好,但其结果的同质区域内部和外部均存在大量噪声点。针对该问题,可以将其结合超像素分割算法进行改善[1]

原理

先利用SLIC 算法对遥感影像进行分割生成具有同质像素的超像素区域,然后利用MBI 算法对遥感影像进行处理生成形态学建筑物指数灰度图,再计算每个超像素区域内的建筑物指数均值,当均值超过某一指定阈值时即可认为该区域是建筑物。

实验数据

与MBI单独算法数据一致。

ae5a5868d4e51bad01c267146f96f223.png
test.jpg

代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值