二阶偏微分方程组 龙格库塔法_二阶变系数微分方程的一些解法

一,变量替换法

欧拉方程:

是常数,

二阶欧拉方程:

(1)当x>0时,令

,则

代入(1),得

(2)当x>0时,令

,则

求导,代入得

例1:

解:令

,则

二,降阶法

设(1)有一个已知的非零解

,令
,其中
是待定函数。

(1)的通解为

,刘维尔公式

代入(1),得

是(1)的非零解,∴

,则

两边积分

,

∴ (1)的通解为

,刘维尔公式

例2,已知

的一个解,求方程(1)的通解。

解:

,

∴通解为

e44fff5568b3b443cbb6fb64f24b4bcd.png

注:

设(1)有一个已知的非零解

,令
,其中
是待定函数。

代入(2)得

,代入(3)得

∴此降阶法对非齐次线性方程仍可用

三,某些特殊的变系数方程化为常微分方程

其中p(x)具有连续的一阶导数,q(x)连续。

代入(1),得

263a0a08fb8e8416249e72a363efbd1b.png

,则

则(2)代入为

0cd233d92a763c865c3c7869b9b80968.png

四,常数变易法

的通解为

是(1)的一个解

补充条件,令

代入(1),得

y1和y2是齐次线性方程的解,

上述方程组有唯一解,记作

∴ (1)有特解

∴ (1)的通解为y=

d249f5feec6c744b6b04bfb1712c63b6.png

5cf0554fc9b403661a3d87b1fa378385.png

71f1ee150bb44803ada4236ffdefb7bb.png

019c7feaea256b120b16f8026c9d758f.png

三,幂级数解法

f7fa344d080143b81f608caf6294d9ce.png

1968cd5adc1f004fd196b09aa82871db.png

b5d6a3bcb5ae8b99108f21308bdb1933.png

0c26ac4c52e4a7bcd556e819fe669c9d.png

4258ca7ec4f2adf914f51116d3cc446c.png

我非常的喜欢写这篇文章,你喜欢这篇文章吗,还有什么需要改正的地方吗,有什么不懂的地方吗?欢迎大家在下面评论区留言哦

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页