如今网络边缘侧的机器学习现状如何?哪些工具可以帮助工程师收集数据并执行推断运算?在哪里可以找到ST
MEMS,它们对现实生活中的产品有哪些影响?本文是我们即将举行的STM32全国研讨会系列的第二篇专题文章。在第14届STM32全国研讨会上,我们将通过应用演示、产品展示以及工程师与观众互动回答问题的方式,来与蝶粉社区近距离交流。在STM32全国研讨会专题系列报道第一部分我们着重介绍了云连接方面的用例,如一款新的智能门铃功能演示,还介绍了工业和数据安全相关应用。
今天,我们将重点探讨人工智能、计算以及感知技术。
人工智能与计算
Qeexo 和STM32Cube.AI
当今边缘机器学习解决方案的种类越来越多,本届STM32全国研讨会将聚焦讨论STM32 MCU在这类应用中的核心角色。我们将演示Qeexo’s
AutoML工业自动化机器学习解决方案(Qeexo是ST合作伙伴计划成员)。该系统使用SensorTile捕获振动和噪声,检测风扇是否损坏或阻塞,这是一个经典的,以最少的投资来最大化提高工厂运营效率的预测性维护应用示例。
全国研讨会上还有很多ST的机器学习应用演示,其中一些已经很有人气,例如,使用机器学习识别食品饮料的STM32H747I-DISCO。它在Technology
Tour in
Toronto(多伦多科技展)上广受关注,在本届全国研讨会参观者中也仍享有很高的人气。我们的工程师还将演示一个智能电表抄表系统,这个特别的演示使用的是STM32WL——我们的第一款带有嵌入式LoRa收发器的MCU。
同样,STM32MP1将出现在一个新的AI多物体检测演示板上。我们重写并优化了C语言代码,这个解决方案是首次在亚洲演示。此外,ST还将展示一个使开发人员可以在STM32L5上